
1

A brief introduction to

 MATLAB (and Octave)
for electrical communications

(Part 1)

Corso di Laboratorio Interdisciplinare II

2

Introduction to Matlab (and Octave)

 Advantages of Matlab
 Easy to learn
 Provides advanced tools for signal generation and processing

 When use Matlab?
 modeling of scenarios when several entities may behave independently but we

are interested in the output of a predetermined entity
 Example:

 Analysis of the effect of MUI on the performance of a single link:

 Matlab allows for detailed simulation of the effect of interferers (red nodes) on
the link S D

S

D

3

Starting Matlab

 You can start MATLAB by double-clicking on the MATLAB icon or invoking the
application from the Start menu of Windows (or the Applications menu under Linux).

 The main MATLAB window, called the MATLAB Desktop, typically looks as follows:

Command W
indow

Workspace

Co
mm
an
d

pro
mp
t

4

Typing commands
 If you type a command at a command prompt, MATLAB executes the command you

typed in, then prints out the result. It then prints out another command prompt and
waits for you to enter another command.

 In this way, you can interactively enter as many commands to MATLAB as you want.
 To exit MATLAB, simply click the mouse on the File menu of the MATLAB command

window and then select "Exit MATLAB" (or just enter quit at the MATLAB command
prompt).

5

Getting Help

 There are three main functions
that you can use to obtain help on
a given function: help, helpwin
(short for help window) and doc
(short for documentation). The
functions help and helpwin give
you the same information, but in a
different window, the doc
command returns an HTML page
with a lot more information. If you
have doubts about a matlab
function the help command
followed by the name of interest is
usually the best (and fastest) way
to proceed.

Not on octave!

6

Creating variables (1/4)

 Variables are a fundamental concept in MATLAB, and you will use them all the time.
Basically, a variable is a holding place for a value which you can give a name to. The
point of this is that, when calculating something new later, you can use the value that a
variable refers to as part of the new calculation.

 You can define and use your own variables, their names will appear in the workspace
window together with the variables’ characteristics.

 Note that the semicolon has the effect to evaluate the expressions without printing out the
results.

Semicolon

effect

7

Creating variables (2/4)
 If you don’t create a variable the value of the expression you type in the command

window is stored in a matlab default variable called ans (short for "answer“). You can
refer to that value by just typing ans:

If you don’t remember all the variable
names you have defined, you can use
the whos command to have info about
the variables currently used

8

Creating variables (2/4) - Octave
 The whos command is supported in octave as well, with a few minor differences

Slightly different syntax (but ‘whos’ works as well)

Internal variable, you can safely ignore it

9

Creating variables (3/4)

 Typing clear at the command prompt will remove all variables and values
that were stored up to that point.

Note that, after the clear
command that removes all the
variables, the whos command
cannot find any variable name
to display.

If you want to remove only
a limited number of
variables, just type the clear
command followed by the
variables’ names

10

Creating variables (4/4)

 There are some specific rules for what you can name your variables, so you
have to be careful.

 Only use primary alphabetic characters (i.e., "A-Z"), numbers, and the underscore character
(i.e., "_") in your variable names.

 You cannot have any spaces in your variable names, so, for example, using "this is a
variable" as a variable name is not allowed, but "this_is_a_variable" is fine.

 MATLAB is case sensitive. What this means for variables is that the same text, with different
mixes of capital and small case letters, will not be the same variables in MATLAB. For
example, "A_VaRIAbLe", "a_variable", "A_VARIABLE", and "A_variablE" would all be
considered distinct variables in MATLAB.

 You can also assign pieces of text to variables, not just numbers. You do this using single
quotes (not double quotes --- single quotes and double quotes have different uses in
MATLAB) around the text you want to assign to a variable.

 Be careful not to mix up variables that have text values with variables that have numeric
values in equations. If you do this, you will get some strange results.

11

Vectors & Matrices (1/5)
 Three fundamental concepts in MATLAB, and in linear algebra, are scalars, vectors

and matrices:

 A scalar is simply just a fancy word for a number (a single value).
 A vector is an ordered list of numbers (one-dimensional). In MATLAB they can be

represented as a row-vector or a column-vector.
 A matrix is a rectangular array of numbers (multi-dimensional). In MATLAB, a

two-dimensional matrix is defined by its number of rows and columns.

 In MATLAB, and in linear algebra, numeric objects can be categorized simply as
matrix: Both scalars and vectors can be considered a special type of matrix. For
example a scalar is a matrix with a row and column dimension of one (1-by-1 matrix).
And a vector is a one-dimensional matrix: one row and n-number of columns, or

 n-number of rows and one column.

 All calculations in MATLAB are done with "matrices". Hence the name MATrix
LABoratory.

What about the name ‘octave’?
Octave Levenspiel
Emeritus Professor of
Chemical Engineering
at Oregon State University

12

Vectors & Matrices (2/5)
 In MATLAB matrices are defined inside a pair of square braces ([]). The blank space

and the semicolon (;) are used to divide elements in a row and different rows,
respectively
 Note: you can also use a comma to divide elements in a row, and a carriage return (the enter

key) to divide rows.

Directly typed Matrix
Row/Column Vectors Matrix by Vectors

Note: You can create a Matrix also
 merging two or more existent
 matrices.

13

Vectors & Matrices (3/5)
 More often than not, the type of data that you will work with will be vectors.
 You can create them manually (as already explained) or by using the colon operator,

with the following syntax:

 START_VALUE:INCREMENT:STOP_VALUE

Vector created using the Colon Operator Example of negative increment

14

Vectors & Matrices (4/5)

 Once a vector or a matrix is created you might need to extract only a subset of the
data, and this is done through indexing.

 In a row vector the left most element has index 1.
 In a column vector the top most element has index 1.

Indexing Vectors

Row Vector

Col. Vector

Indexing Matrices

15

 Vectors & Matrices (5/5)
 You can also extract any contiguous subset of a matrix, by referring to the row range

and column range you want.
 For example, if mat is a matrix with 4 rows and 5 columns, then typing mat(2:4,3:5)

would extract all elements in rows 2 to 4 and in columns 3 to 5.

Matrix subset You can also modify any value in a
matrix or vector indicating its
position and the new value to be
inserted

16

Element by element operations (1/2)

 The element-by-element operators in MATLAB are as follows:
 element-by-element multiplication: ".*"

element-by-element division: "./"
element-by-element addition: "+"
element-by-element subtraction: "-"
element-by-element exponentiation: ".^"

el-by-el multiplication (Hadamard product)

el-by-el exponentiation

17

Element by element operations (2/2)

 Element-by-element operators can be used with scalars and vectors together.
 A few examples:

multiplication Subtraction Division

18

Multiplication of 2 vectors/matrices

 It is represented by the single symbol *
 It carries out the well known matrix multiplication (rows by columns)

Vectors

Means “transposed”

Matrices

Note that the number of
rows in A is the same as
the number of columns
in B.

 CAVEAT:

A*B ≠A.*B

19

Visualizing data (1/7)
 The basic plotting command in Matlab is plot,
 When invoked with two same-sized vectors X and Y, plot creates a two-dimensional

line plot for each point in X and its corresponding point in Y:

Plot command

Matlab will display the figure in a
pop-up window, if you decide to save
it the matlab default format is the
.fig format

20

Visualizing data (2/7)

 If you want to label the axes, give your figure a title or create a grid in the background
of your plot, you can use the xlabel, ylabel, title and grid on command respectively:

Plot labels and enhancement

21

Visualizing data (3/7)

 Let’s now plot a parabola introducing the x_axis significant points not one by one, but
using the shortcut already seen in Slide 12:

Parabola plotting

Note that we have now
inserted 100 x values in a
very compact way

22

Visualizing data (4/7)
 Superimpose multiple plots in the same figure window allows to easily compare the

plots.
 This can be done using the hold command.
 Normally, when one types a plot command, any previous figure window is erased, and

replaced by the new plot.
 If one types "hold on" at the command prompt, all line plots subsequently created will

be superimposed in the same figure window and axes.
 "hold off" will revert to the default behavior

Plots superimposed

23

Visualizing data (5/7)
 A different way to compare multiple plots is to have each of them in a separate part of

the window.
 This can be obtained with the subplot command.
 If one types subplot (M,N,P) at the command prompt, MATLAB will divide the plot

window into a set of rectangles organized in M rows and N columns
 The result of the next "plot" command will appear in the Pth rectangle (where the first

rectangle is in the upper left):

Subplot

24

Visualizing data (6/7)
 Two different kinds of three-dimensional plots can be displayed in MATLAB:

1) three-dimensional line plots and 2) surface mesh plots:

 three-dimensional line plots

25

Visualizing data (7/7)
 surface mesh plots: You can use the mesh and meshgrid commands to create

surface mesh plots, which show the surface of three-dimensional functions:
 How it works:
 1) Generate a grid of points in the xy-plane using the meshgrid command.

2) Evaluate the three-dimensional function at these points.
3) Create the surface plot with the mesh command.

3-D Parabola

26

Scripts (1/3)
 A MATLAB script is an ASCII text file that contains a sequence of MATLAB

commands.
 When naming a script file, one has to append the suffix ".m" to the filename,

for example "myscript.m". Scripts in MATLAB are also called "M-files”.
 The commands contained in a script file can be run in the MATLAB

command window by typing the name of the file at the command prompt.
 You can use any text editor, such as Microsoft Windows Notepad, or word

processor, such as Microsoft Word, to create scripts, but you must make
sure that you save scripts as simple text documents.

 It is much easier to create your scripts using MATLAB's built-in text editor.
 To start the MATLAB text editor simply type edit at the command prompt or

select File->New->M-file from the MATLAB desktop menu bar.
 The MATLAB text editor provides syntax highlighting, making easier to read

the script, as well as the possibility of running and debugging the code

27

Scripts (2/3)
 Example: the following script generating a parabola created using MATLAB's built-in

text editor. The name of the script is parab1.m:
If the script is saved in a
directory included in the
Matlab path it can be
run by simply typing
parab1 at the Matlab
command prompt

Script edited using Matlab editor

28

Scripts (3/3)
 Comments in scripts help understanding the code
 A comment can be placed anywhere in a script with the % sign

29

Functions
 Functions are M-files that can accept input arguments and return output
 arguments. The names of the M-file and of the function should be the

same.

 Functions operate on variables within their own workspace, separate from
the workspace you access at the MATLAB command prompt.

Function squarebin Running squarebin

30

Saving variables (1/2)
 The save command can be used to save all or only some of your variables

into a MATLAB data file type called MAT-file. If you want to choose the
name of the file yourself, you can type “save” followed by the filename you
want to use. MATLAB will then save all currently defined variables in a file
named with the name you chose followed by the suffix ".mat"

 Before saving you have to specify the path to where you want Matlab to
save your variables or simply change the current directory if you need to. To
know which directory is the current one just type the PWD command.

 To see if your .mat file is where it should be you can use the dir command
which lists the file of the current directory.

 If you want to save only a limited number of variables within your workspace
just type their names after the save command and the filename.

Only true for matlab!

31

Saving variables (2/2)
 Saving steps:

32

Loading variables
 Saved variables can be retrieved with the load command followed by a filename

(without the ".mat" suffix):

33

Adding a folder to the path
 To add a folder to the Matlab search-path simply select:

 fileset path add folder(select a folder)save

 or use the addpath command followed by the complete folder path

also works in octave...

34

Matlab vs. Octave
 (Almost) complete compatibility at code level
 Matlab offers a more integrated solution for writing and running the code
 Octave only offers the equivalent of the command window, but graphical front-ends to

octave are freely available. See for example qtoctave:

 Instructions on how to download&install octave and qtoctave will be available on the
course website for Windows, Mac Os X and Ubuntu Linux

