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Chapter 1

Introduction

In recent years the demand for high data rate transmission is growing for
indoor wireless communication systems. One of the most promising candidates
that can fulfill the necessity for higher data rates in wireless communications
is the TeraHertz (THz) band (0.1-10 THz). However, THz frequencies have
peculiar propagation characteristics such as high free space loss, high molecular
absorption, and high diffuse scattering attenuation. Therefore, it is necessary
to consider all possible sources of attenuation and distortion in order to propose
a propagation model for the THz range of frequencies.
Presently, there exist numerous statistically based channel models, which are
generally considered adequate for outdoor environment planning. For indoor
wireless services, though, these statistically based models do not provide suffi-
cient information because of the complexities and variations of the propagation
environments, which are usually rich in reflections and scattering.
A feasible propagation model, based on geometrical ray tracing, can be used to
predict details about an indoor environment with known parameters such as
geometry and building materials. A suitable model for almost any indoor situ-
ation can be generated by adjusting these specific parameters. Moreover, the
model needs to be sufficiently general to accommodate signal properties such
as polarization and channel parameters such as geometry, dielectric constants
of the surfaces, and the like. This research proposes a multipath channel model
to predict the propagation of wireless signals in indoor environments more
accurately. Although a plethora of works has been done on different aspects
of THz channel modeling, a detailed tutorial from the physical nature to the
implementation of THz channel modeling has been missed so far to the best of
the author’s knowledge. The aim of this work is to give a well description of
different type of attenuation at THz frequencies and explore the fundamental
concepts behind developing a unified channel model which accurately charac-
terizes the Terahertz spectrum peculiarities. Besides, a self-implemented ray
tracer is also proposed to analyze the THz range channel model, taking into
account the impact of most characterizing factors, including free-space path
loss, molecular absorption, and scattering. Numerical results will be verified
along with the theory and measurements.
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In this thesis, an introduction to THz characteristics such as free space atten-
uation, molecular attenuation, and diffuse scattering is given in Chapter 2,
along with a complete picture of diffuse scattering and Kirchhoff theory, which
will be covered later in the study.
Chapter 3 presents the statistical description of the most commonly used sur-
faces in indoor environments. Also, we discuss different methods for generating
randomly rough surfaces often used in indoor environments. Then a multi ray
propagation model is proposed, which includes THz band characteristics.
In chapter 4, a homemade ray-tracing simulator is proposed. This chapter
covers a description of the image-based ray tracing method besides a full
description of the indoor environment, including obstacles. Moreover, the way
of applying the Kirchhoff theory in the ray-tracing simulator is introduced. To
model the THz channel model, the surface profile, which is generally unknown,
is required first. Thus the generation of a random surface model followed by a
description of computing scattered power from the generated random rough
surface is presented.
In chapter 5, the results obtained by using the proposed ray-tracing tool are
presented. The results focus on comparing the measured reflection coefficient in
the specular direction and the theory, showing the impact of specific parameters
affecting the received power, and discussing the power delay profile and the
frequency-dependent channel impulse response (CIR) at each center frequency.
Finally, in chapter 6, we provide a summary of the research and some con-
clusions. We also provide possible directions for future work in this research
area.
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Chapter 2

TeraHertz communications

2.1 TeraHertz waves characterization

A remarkable increase in the use of mobile devices and wireless networks
has been witnessed in recent years. A research carried out by the Japanese
government on an estimation of the annual growth rate of mobile traffic in
Japan [5], shows a 71% of the annual growth rate of mobile traffic from 2007 to
2017. Thus, there is a necessity to increase the capacity of wireless networks.
Solutions were proposed to increase channel capacities such as advanced mod-
ulation methods and increased operating frequencies such as TeraHertz (THz)
frequencies. TeraHertz communications are an attractive solution because
of the availability of frequency band and communication bandwidth since
frequencies above 300 GHz are unallocated by the Federal Communication
Committee(FCC). Figure 2.1 [6] shows wireless spectrum used by the commer-
cial systems in the USA. Each row represents a decade in frequency, and it
can be seen that frequencies over 300 GHz are unallocated by FCC. Figure
2.1 shows the frequency allocation from 30 kHz to 300 GHz by the FCC in
the USA. Other countries have very similar frequency allocations. Figure 2.1
shows that as well known lower frequencies are already allocated to many
different uses such as AM Radio and TV broadcasting. Current cellphone and
wireless devices operate at carrier frequencies between 700 MHz and 6 GHz.
The mmWave frequencies are in the range between 30 to 300 GHz and are used
by military, radar, and backhaul, but utilization the much lower. As a matter
of fact, most countries have not allocated frequencies above 100 GHz [6]. It is
worth mentioning that the unallocated frequencies around 60 GHz provide a
more available spectrum than what is used by altogether the satellite, cellular,
WIFi, AM Radio, FM radio, and TV stations in the world. At 300 GHz, there
is even more available bandwidth than at 60 GHz. THz communications are
in the earlier stage of development and provide, therefore, a lot of room for
future development.
Frequency range between 100 GHz and 10 THz, i.e., wavelengths between 3
mm and 3µm, is considered as "TeraHertz frequencies" that is also known as
far-infrared or sub-millimeter waves, due to the fact that part of this range
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Figure 2.1. Frequency allocations in the USA by the FCC for commercial allocations.
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includes the far-IR range and also part of this range includes the millimeter
range (see Fig. 2.2). TeraHertz frequencies have peculiar characteristics, such

Figure 2.2. Frequency and wavelength regions of the electromagnetic spectrum.

as high free space loss, high molecular absorption, mainly due to water vapor
molecules [7], and high diffuse scattering attenuation. Regarding these char-
acteristics, there are several kinds of research on analyzing the atmosphere
absorption [8], scattering of building materials [9, 4, 2, 10], link budget[11],
body nanonetworks [12], MIMO [13], and so forth [14, 15].
This chapter is organized as follows. Section 2.1 served as an introduction to
THz characteristics and provided a general view of THz waves. Section 2.2
focuses on the characteristics of wireless propagation at THz operating frequen-
cies. This section covers several propagation properties at THz range, such as
free space attenuation 2.2.1, molecular attenuation 2.2.2, and diffuse scattering
2.2.3 followed by a complete picture of diffuse scattering and Kirchhoff theory
2.2.4, 2.2.5. Note that Kirchhoff theory is used to describe the reflection of the
electromagnetic plane waves from smooth and rough surfaces.

2.2 Propagation properties

TeraHertz frequencies have peculiar propagation characteristics such as high
free space loss, high molecular absorption, mainly due to water vapor molecules
[7], and high diffuse scattering attenuation. Moreover, due to the presence of
obstacles or multiple signal reflections, waves are also affected by the material
characterizing the surfaces they interact with. In particular, the interaction
with rough surfaces gives rise to diffuse scattering. As a matter of fact, the
definition of the roughness of a surface is not only related to the morphology
of the considered surface, but it also depends on the frequency. The surface
roughness increases with the frequency of the incoming waves. Thus, surfaces
that can be considered smooth at lower frequencies cease to be so at THz
frequencies, making diffuse scattering an important characterizing factor for
THz wave propagation. This section will address the above typical phenomena.
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2.2.1 Free space attenuation

An EM wave that travels between a transmitter (TX) and a receiver (RX) is
typically affected by the free space attenuation, as described by Friis [16]. In
other words, when the EM wave is propagating, the area of the transmitted
power will increase by the rate of square of the distance between two points,
but at the receiver, the area is fixed so, the received power at the receiver will
decrease by the factor of quadratic distance and usually is described in dB.
The free space path loss AFS that is the attenuation experienced by the
transmitted power is given by the well-known Friis equation, i.e.:

AFS = (4πd)2

λ2GTGR

, (2.1)

where λ is the wavelength, d is the distance between the Tx and Rx, and GT , GR

denote the gains of the antenna at TX and RX, respectively. Note that d and
λ have the same unit, while GT and GR are adimensional. At THz frequencies,
free space attenuation can be relatively high due to quadratic increase with
the frequency; Consider, for example a typical indoor environment, such as
office space of 4 m × 4 m × 3 m, and a 4 m distance between TX and RX,
then, for isotropic antennas, one would have AFS = 84.48 [dB] at 100 GHz,
and AFS = 104.48 [dB] at 1 THz: for a distance of just 4 meters!. Figure
2.3 shows the dependence of free space path loss to the frequency, i.e., higher
frequencies higher AFS, and also shows the quadratic impact of distance d on
AFS in dB. By increasing traveling distance from 2 meters to 8 meters, one
faces with higher AFS.

2.2.2 Atmosphere attenuation (Molecular absorption)

When an EM wave is traveling in a medium, the molecules are excited by the
EM waves at specific frequencies within the THz band, which leads to internal
vibrations of molecules. This vibration is because of converting the energy of
propagating wave into the kinetic energy, which in the field of communication
is named as lost [7]. Several studies are done to collect the required [17, 18, 19]
parameters to characterize the different resonance for different molecules, and
these databases are based on real measurements. It is worth mentioning that
for the THz frequencies or the frequencies between 0.1 to 10 THz, all the
required data to compute the attenuation due to molecular absorption can
be found in these databases. Therefore, computing molecular absorption in a
given medium relies on HIgh-resolution TRANsmission (HITRAN) molecular
absorption line catalog or database [7].
The information provided by the HITRAN databases is used to compute the
experienced attenuation of a wave traveling distances up to a few meters due
to molecular absorption. Therefore, it is required to compute the fraction of
incident EM waves at a specific frequency that can pass through the medium,
namely as the transmittance of a medium τ , which is obtainable by using the
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Figure 2.3. Free space pathloss as a function of frequency and distance d.

Beer-Lambert Law. i.e. [7, 20]:

τ(f, d) = P0

Pin
= e−κ(f)d, (2.2)

where f refers to the frequency of the EM wave, d stands for the total path
length, Pin and P0 are the powers of the incident and radiated waves, respec-
tively, and κ is the medium absorption coefficient in m−1 which depends on
the composition of the medium. It shows the specific mixtures of molecules
found along with the medium. In [7, 20], the way of computing κ is explained
in detail. In the following tried to shortly explain how to compute κ. κ can be
computed as [7]:

κ(f) =
∑
i,g

κi,g(f), (2.3)

where κi,g is related to the individual absorption coefficient for isotopologue
i of gas g. In order to compute the absorption coefficient of the medium,
it is required to sum all the absorption coefficient related to the different
isotopologues of the gases presented in the medium.
The absorption coefficient of the isotopologue i of gas g κi,g , in m−1, for a
molecular volumetric density (i.e. the number of molecules per volume unit)
Qi,g , in molecules/m3, at pressure p and temperature T can be computed as:

κi,g(f) = p

p0

TSTP
T

Qi,gς i,g(f), (2.4)

where Qg is the molecular volumetric density of gas g, that is, the number of
molecules per volume unit in molecules/m3 at pressure p and temperature T .
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p0 and T0 denote Standard-Pressure-Temperature (STP) values, T0 = 273.15°K
and p0 = 1 atm. ς i,g is the absorption cross-section of gas g in m2/molecule,
used to describe the absorption properties of a single molecule measured in
the area [21]. It is obvious that the absorption coefficient of the isotopologue i
of gas g, κi,g , depends on the total number of the molecules per volume unit
Qi,g . In other words, the total absorption depends on the number of molecules
of a given gas that are found along the path and can be obtained from utilizing
Ideal Gas Law as:

Qi,g = n

v
qi,gNA = p

RT
qi,gNA, (2.5)

where n is the total number of moles of the gas mixture that is being considered,
v stands for the volume, qi,g is the mixing ratio for the isotopologue i of gas
g, mixing ratio usually refers to the mole ratio which is defined as the amount
of a constituent divided by the total amount of all other constituents in a
mixture, NA stands for the Avogadro constant and R is the gas constant and
all of these parameters can be found in HITRAN database. Note that in the
HITRAN database, the mixing ratio of the specific gas, qg , should be used for
all of the isotopologues, instead of the individual mixing ratios qi,g [7].
Moreover, κi,g also depends on the absorption cross section ς i,g , that can be
further decomposed in terms of the line intensity Si,g for the absorption of
the isotopologue i of gas g and the spectral line shape Gi,g as:

ς i,g(f) = Si,gGi,g(f), (2.6)

in which Si,g refers to the strength or the absorption peak amplitude of a
specific type of molecules, isotopologue i of gas g, and is directly obtained
from the HITRAN database. Therefore, the only variable that is needed to
define the absorption cross section is line shape Gi,g . In order to obtain Si,g ,
it is necessary to determine the position of the resonant frequency, f i,gc , for
the isotopologue i of gas g that increases linearly with the pressure p from its
zero-pressure position p0 as [7]:

f i,gc = f i,gc0 + ς i,gp/p0, (2.7)

where f i,gc0 is the zero-pressure position of the resonance and ς i,g is the linear
pressure shift which all of these values can be taken from HITRAN database
directly.
The absorption from a particular molecule is not confined to a single frequency
but spread over a range of frequencies that this spreading is shown by the
collision between the molecules of the same gas. The absorbing gas is often a
trace gas mixed in with the air; in this case, the trace gas’s molecule shall nearly
always collide with a Nitrogen or an Oxygen molecule. Hence, there are two
different line broadening, namely as foreign broadening(air), line broadening
due to trace gas molecules colliding with air molecules, and “self broadening”
that is line broadening due to collisions with like trace gas molecules. The
amount of this broadening depends on the molecules involved in the collisions,
and it is usually referred to as the Lorentz half-width coefficient αi,gL that can
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be obtained as a function of the air and self-broadened half-widths, αair0 and
αi,g0 respectively, as:

αi,gL =
[(

1− qi,g
)
αair0 + qi,gαair0

] ( p
p0

)(
T0

T

)ι
, (2.8)

where qi,g is the mixing ratio for the isotopologue i of gas g, p is the system
pressure, p0 refers to the reference pressure, T0 is the reference temperature,
T refers to the system temperature, and ι is the temperature broadening
coefficient. The values of ι, αair0 and αi,g0 can be obtained directly from the
HITRAN database. It can be seen that the number of molecules either increases
the amplitude of the peak of the absorption, equation (2.6), and change the
shape of the absorption peak and make it wider [7]. In the THz frequencies,
Van Vleck-Weisskopf asymmetric line shape [7] is applied as:

zi,g(f) = 100cα
i,g
L

π

f

f i,gc

 1(
f − f i,gc

)2
+
(
αi,gL

)2 + 1(
f + f i,gc

)2
+
(
αi,gL

)2

 ,
(2.9)

where f stands for the frequency of the EM wave, c is the speed of light in
the vacuum, αi,gL is the Lorentz half-width coefficient for the isotopologue i
of gas g and f i,gc is the resonant frequency for the isotopologue i of gas g.
Moreover another adjustments is done to account the continuum absorption in
[7] is proposed as:

Gi,g(f) = f

f i,gc

tanh
(

þcf
2kBT

)
tanh

(
þcf i,gc
2kBT

)zi,g(f), (2.10)

þ is the Planck constant, kB is the Boltzmann constant, T is the system
temperature and c is the speed of light.
Now all the parameters required to compute the total molecular absorption for
each isotopologue i of gas g presented in the medium are provided. The total
attenuation due to molecular absorption for an EM waves that is traveling a
distance d can be obtained from the transmittance of a medium which is given
by equation (2.2), through:

AM(f, d) = 1
τ(f, d) = eκ(f)d, (2.11)

which can be written in dB as:

AM(f, d)[dB] = κ(f)d10log10e. (2.12)

At THz frequencies, the major contribution to molecular absorption is given by
water vapor molecules [7]. Several studies, for example [5, 11], have investigated
the influence of molecular absorption in different environmental conditions.
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Results show that an increase in the number of water vapor molecules leads to
an increase in attenuation caused by molecular absorption. Figure 2.4 shows
molecular absorption as a function of frequency per unit of distance in dB,
AM [dB/m], that is evaluated with am model [20] for an indoor office with an
air pressure p = 1 atm, a temperature T = 298.55 ◦K, and Relative Humidity
(RH), that is used as a measure of water vapor content in the air, of 30 %
vs. 70 %. Figure 2.4 shows that when the number of water vapor molecules
increases, that is with a larger RH, AM increases. It also shows that higher
values of AM are obtained at higher frequencies. Figure 2.5 shows molecular
absorption AM [dB/m], by oxygen (O2) (Fig. 2.5a) and water (H2O) (Fig.
2.5b) as a function of frequency under the condition p = 1 atm, T = 298.55 ◦K
and d = 1 m. Note that the contribution of oxygen is negligible compared to
water vapor at THz frequencies, as can be easily seen from the different scales
of AM in Fig. 2.5a vs. Fig. 2.5b; for instance, AM ≈ 6.8619× 10−5 [dB/m] for
O2 at 1 THz, while AM ≈ 0.7349 [dB/m] for H2O at the same frequency.
In summary, the total attenuation experienced by an EM wave at THz frequen-
cies is the sum in dB of the free space attenuation AFS, and the attenuation
due to the molecular absorption attenuation, AM :

A[dB] = AM [dB] + AFS[dB], (2.13)

where AFS can be written in dB as:

AFS[dB] = 20 log10(d) + 20 log10(f)− 147.5582. (2.14)

For instance, the total attenuation experienced when d = 4 m, p = 1 atm,
T = 298.55 ◦K and RH = 70 % at f = 1 THz is A ≈ 110.62 [dB]. Since
AFS ≈ 104.48 [dB] and AM ≈ 6.14 [dB].

2.2.3 Diffuse scattering

One of the THz waves’ characteristics is that the surfaces that consider smooth
in lower frequencies do not consider smooth in higher frequencies. Therefore,
one face with diffuse scattering phenomenon from rough surfaces. Rayleigh
[22] suggested a way to understand that under which circumstances a surface
is considered smooth or rough. Rayleigh found this answer based on three
measurable parameters, such as the maximum height of the surface irregularities
h, grazing angle of the incident wave φ, and the wavelength of the wave λ.
These conditions lead to the so-called Rayleigh criterion. Consider incident
and reflected waves at height 0 (wave 1) and at height h (wave 2), as shown in
Fig. 2.6. The path difference ∆r, and phase difference ∆ϕ of the incident and
reflected waves at the two elevations of the surface are given by:

∆r = 2hsinφ (2.15)

and
∆ϕ = 2π

λ
∆r = 4πh

λ
sinφ. (2.16)
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Figure 2.4. Molecular absorption per unit of the distance in dB, AM [dB/m], as a function
of frequency, evaluated for two different Relative Humidity values (30% and 70%),
room temperature T = 298.55 ◦K, air pressure p = 1 atm, d = 1 m and p0 = 1 atm,
T0 = 273.15 ◦K.

(a) O2 molecules (b) H2O molecules

Figure 2.5. Molecular absorption per unit of the distance in dB, AM [dB/m], as a function
of frequency for two specific molecules (a) O2 and (b) H2O, considering d = 1 m, pressure
p = 1 atm and temperature T = 298.55 ◦K.

If the phase difference is small, the two rays will be almost in phase as they
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are in the case of a perfectly smooth surface. If the phase difference increases,
the two rays will interfere until ∆ϕ = π they will be in phase opposition and
canceled. Thus, the surface scatters and is rough. Rayleigh chose the value
between two cases, ∆ϕ = π

2 , and put this value in equation (2.15) to find the
relation known as Rayleigh criterion. The Rayleigh criterion states that a
surface is smooth if ∆ϕ < π

2 , that is:

h <
λ

8sinφ (2.17)

Note that ∆ϕ→ 0 if h
λ
→ 0 or sin(φ)→ 0. Therefore, the degree of roughness

Figure 2.6. Profile of a surface characterized by irregularities of elevation h.

of a surface depends on the angle of incidence φ and the frequency of the
incoming wave.
In Fig. 2.7, the Rayleigh criterion for different frequencies and different grazing
angles is examined. Note that regarding Rayleigh criterion for h < λ

8sinφ the
surface consider smooth, so as long as the value of h becomes bigger, reaching
this criterion is more accessible, but on the other hand, if the value of h
becomes smaller, achieving this value becomes more difficult, and the surface
for smaller height consider rough. As it is shown in the equation (2.17), the
value of h is directly related to the wavelength and the result shown in Fig. 2.7
depict this fact. Moreover, table 2.1 shows the results of applying the Rayleigh
criterion to THz frequencies, in particular, 100 GHz, 1 THz, 10 THz, and at
three grazing angles, π/12, π/6, π/3. At lower frequencies, the maximum value
of h is higher for a surface to be considered as smooth. Table 2.1 also shows
the impact of grazing angle φ, on the surface roughness, i.e., the smaller φ, the
smoother the surface.
Although the Rayleigh criterion has been used for many years due to its

simplicity, it is not very precise [23]. In order to better describe the roughness of
a surface, statistical parameters are needed. Therefore, not only the variation of
the surface height but also another parameter indicating whether the hills and
valleys of the surface are close or far from each other must be considered. The
surface pattern can be described by the standard deviation of its height σ from
the average value of height h. Also, the correlation length Tcorr, computed
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Figure 2.7. The different values of grazing angle φ for the same wavelength show the
impact of φ on the surface roughness when φ→ 0 the surface becomes smoother

with respect to the surface profile, can be used to describe the surface in
statistical terms. Moreover, another parameter g, called ’roughness factor’
[4, 2, 23], can be used as a parameter to grade the roughness of the specific
random surfaces with Gaussian height distribution for a given frequency. This
roughness parameter will be introduced in more detail in section 2.2.4.
Note that when an EM wave hits a smooth surface, it is reflected according to
Fresnel law of reflection, ruling that the incoming ray is specularly reflected in
one single direction. In contrast, when the surface is rough, the reflected ray
scatters in various directions. Figure 2.8a shows the geometry of the reflection
where −→E1 is an incident wave, −→r is the position vector of the hit point on
the surface, −→k1 indicates the direction of the incident wave, −→k2 indicates the
direction of the reflected wave, and θ1 and θ2 are the angles of the incident
vs. reflected wave with respect to the normal to the surface. In the case of a
smooth surface, most of the energy is reflected in the specular direction, i.e.,
θ1 = θ2, and both incident and reflected waves are in the same plane as the
normal vector to the surface, called the plane of incidence. In the case of a
rough surface, however, the reflected wave may be out of the plane of incidence,
and it does not follow the laws of reflections. Depending upon the surface’s
roughness, the amount of energy in the specular direction decreases, and part
of the energy reflects in other directions. Figure 2.8b shows the geometry of
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Table 2.1. Maximum height for a surface to be considered as smooth according to the
Rayleigh criterion for EM waves at 100 GHz, 1 THz, 10 THz and for three values of the
grazing angle φ: π

12 ,
π
6 ,

π
3 .

f = 100 GHz
(λ = 3 mm)

f = 1 THz
(λ = 0.3 mm)

f = 10 THz
(λ = 0.03 mm)

φ = π
12 h < 1.4 mm h < 0.14 mm h < 14 µm

φ = π
6 h < 0.75 mm h < 0.075 mm h < 7.5 µm

φ = π
3 h < 0.433 mm h < 0.0433 mm h < 4.3 µm

(a) (b)

Figure 2.8. Geometry of reflection from a surface. (a) incident wave −→E1 and reflected wave
−→
E2 are in the same plane with normal vector to the surface, i.e. the plane of incidence.
(b) −→E2 is reflected out of plane of incidence with a deviation angle θ3. −→r is the position
vector of the hit point on the surface,

−→
k1 indicates the direction of −→E1,

−→
k2 indicates the

direction of −→E2, θ1 and θ2 are the angle of incident vs. reflection wave respectively.

the reflection on a rough surface in which θ3 is the deviation angle of the plane
of the scattered wave −→E2, from the plane of the incidence wave −→E1.
In the presence of obstacles or reflections, besides molecular and free space
attenuation, scattering attenuation must, therefore, be considered. Hence, the
total attenuation becomes:

Atot[dB] = AM [dB] + AFS[dB] + Asca[dB], (2.18)

where Asca is scattering attenuation.
Analytical theories such as the small perturbation method proposed by Rice
[24] and the Kirchhoff theory [23], approximate the energy of reflected rays
from a rough surface. The condition for the validity of perturbation theory
is that the root mean square (RMS) height of the random rough surface
hr, should be much smaller than the incident wavelength, which is usually
expressed as khr � 1, with k = 2π

λ
the wavenumber. This method, hence, is
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not relevant for surfaces with large RMS height and also can not adequately
address many of the surfaces at THz frequencies [4, 25, 26]. On the other hand,
the Kirchhoff theory was shown to be applicable for surfaces with large RMS
height [23] and is well suited for simulating THz scattering from rough surfaces
[4]. Moreover, in order to analyze the effects of reflected and scattered rays at
THz frequencies, Kirchhoff theory can be implemented straightforwardly by
applying a ray-tracing algorithm with a reasonable computational efficiency
[4] as explained in detail in the next section.

2.2.4 Kirchhoff scattering theory

Kirchhoff’s physical reflectance model describes the reflection of the electro-
magnetic plane waves from smooth and rough surfaces. A detailed derivation
of this model can be found in [23]. This model is derived from the EM waves
reflection theory [23]. This section briefly introduces the Kirchhoff physical
reflectance model and highlights the key steps involved in the model’s deriva-
tion. Moreover, we tried to clarify the assumptions required in the model.
EM waves are made up of electric and magnetic fields. EM waves propagat-
ing in free space can be considered as Transverse-Electro-Magnetic (TEM),
meaning that TEM waves have their electric(E)-field and magnetic(M)-field in
directions, which are perpendicular to the propagation direction. Moreover,
EM waves in free space are spherical. Suppose that a source radiates an EM
wave. When the EM wave travels far enough and strikes a point on a surface,
the spherical waves radiated by the source may be assumed to be plane waves
at that point, i.e., at the region near to that point, it locally looks like a plane
wave since the radius of curvature becomes so large. In other words, when
the distance from the radiating antenna becomes larger than the Fraunhofer
distance, we can consider locally, the EM wave as a plane wave. The Fraunhofer
distance is defined as:

dF = 2D2

λ
, (2.19)

where D is the largest dimension (or diameter) of the radiator, and λ is the
wavelength of the considered wave. dF provides the limit between far and near
field; therefore, for a distance d greater than dF we can consider locally the
EM wave as a plane wave. In Fig. 2.9, a plane wave at an instant time t0
is depicted, with ê being the unit vector that indicates the direction of the
E-field, which is perpendicular to the direction of M-field. ê is orthogonal to
the propagation direction. Note that at time t0, all the points on the plane
PW, with position vector −→r , experience the same E and M-field. A plane
wave in free space can be expressed only by its E-field vector. As a matter of
fact, from Maxwell equations we have

−→
H = −η0

−→r ×
−→
E , (2.20)

where −→H is the M-field vector and η0 = 376.73Ω is the impedance of free space.
Let −→E be the E-field vector of a plane wave. At an observation point with
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11
Figure 2.9. An EM plane wave at a particular instant of time. ê indicates the direction of

E-field, −→r is the position vector of a point,
−→
k stands for the propagation vector.

position vector −→r = xx̂ + yŷ + zẑ (see Fig. 2.8a and Fig 2.9), −→E can be
expressed as:

−→
E = E0ê exp

[
j(−−→k · −→r + ωt)

]
, (2.21)

where E0 is the amplitude of the E-field and −→k = kk̂ is the wave vector, its
unit vector k̂ points in the direction of propagation and its magnitude k = 2π

λ
is called wave number or propagation constant. ω is the radian frequency of
the field oscillation, and t is the time. Note that ωt can be dropped because,
in Kirchhoff theory, only the instantaneous scattering of the incident wave is
addressed [23].
The notation used in this section will be used for all the thesis. We shall use the
Cartesian coordinate x,y,z with the origin O = (0,0,0) and unit vectors x̂, ŷ, ẑ.
The height of a rough surface is determined by the function h = h(x, y), and the
mean level of the surface height is the plane z = 0. All parameters related to
the incident field shown by subscript 1, and those related to the scattered field
shown by subscript 2. The incident wave’s polarization is determined by the
direction of the electric field shown by unit vector ê1. For parallel polarization,
ê1 lies in the plane of incidence, while for perpendicular polarization, ê1 is
normal to the plane of incidence. The incident field is denoted by the scalar
E1, with:

E1 = −→E1 · ê1. (2.22)

When an incident plane wave hits a surface point P, the electrons on the
surface experience forces by the electromagnetic field carried by the incident
wave. These forces lead to electrons movements and generate surface currents.
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Consequently, the newly generated surface currents generate an EM field Es
that interacts with the incoming wave field. The resulting field Es must satisfy
the wave equation [23]:

∇2Es + k2Es = 0. (2.23)

The scattered field can be found, in any direction, from the field on the surface.
Consider that the height of a rough surface is determined by the function
h = h(x, y), and the mean level of the surface height is the plane z = 0.
Let B be the point of observation and let R′ be the distance from B to a
point, x, y, h(x, y) on the surface. In order to deal with plane scattered waves
rather than spherical ones (i.e., with the direction of θ2 rather than point
B), R′ is assumed to be larger than the Fraunhofer distance. However, this
assumption is withdrawn by admitting a small error or sacrificing the simplicity
of computation, as shown in Fig. 2.10.
In order to find the scattered field E2 at point B, let consider volume V

Figure 2.10. Plane wave incident on a rough surface. The height of the surface is a
function of h = h(x, y), −→r is the position vector of an point on the surface P, B is
the observation point, −→n is normal vector,

−→
k1 and

−→
k2 are the incident and reflected

plane wave propagation vector, R0 and R′ are the distance between B and the origin
and P respectively. θ1, θ2 and θ3 are the angles of incidence, reflected and deviated,
respectively.

bounded by the surface S. Assume that the point B is outside V. The field Es
is continuous, equation (2.23) must, therefore, be satisfied everywhere inside
V. Moreover, assume that the nearest point to B experiences almost the same
field as B. Regarding these assumptions, the scattered field E2 at point B can
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be obtained [23] from equation (2.23) as:

E2(B) = 1
4π

∫∫
S

(
(E)S

∂ψ

∂n
− ψ

(
∂E

∂n

)
S

)
dS, (2.24)

where
ψ = ejk2R′

R′
, (2.25)

where, k2R
′ = k2R0 −

−→
k2 · −→r . R0 is the distance between the point B and

O, R0 = OB (see Fig. 2.10). Equation (2.24) is the Helmholtz integral and
gives the solution of the wave equation, equation (2.23), at an interior point
of region V , in terms of the surface field, ES, and the normal derivative of
the field ES on the surface S (∂E/∂n). More details about Helmholtz integral
is provided by [23]. E and ∂E/∂n are the field, and its normal derivative on
the surface S. These two quantities are in general unknown, and Kirchhoff
theory, therefore, is used to approximate the value of the field and its normal
derivative at each point on the surface.
The Kirchhoff theory’s basic assumption is that the field at any point on the
surface Es is approximated by the field that would be present on the tangent
plane of the considered point. Based on this assumption, the field at any point
on the surface can be expressed as the sum of the incident field E1 and the
reflected field E2 = γE1 as:

ES = E1 + γE1. (2.26)

where γ is the Fresnel reflection coefficient, which determines the fraction of
the incident field reflected by the smooth surface of the tangential plane at the
considered point. In addition, the normal derivative of the field can be found
by differentiating this equation as:(

∂E

∂n

)
S

= (1− γ)E1
−→
k1 · −→n , (2.27)

where −→n is the normal vector to the surface at the considered point. Although
the considered surface might be rough, Kirchhoff approximation implies that
the surface is locally smooth, and therefore the Fresnel coefficient is applica-
ble. Hence, the validity of the Kirchhoff theory’s approximation holds when
the radius of curvature of the irregularities of the surface is larger than the
wavelength, i.e., does not contain any sharp edges, as shown in Fig. 2.11a,
but ceases to hold if the surface includes sharp edges, (see Fig. 2.11b). The
limitation value related to the radius of curvature of the surface can be defined
as [23]:

4πrccosϑ� λ, (2.28)
where rc is the radius of curvature of the surface at the point of reflection, ϑ
is the local angle of incident, i.e., the angle of incidence with respect to the
normal at the considered point. Table 2.2 depicts the values of rc for three
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(a) (b)

Figure 2.11. The tangent plane at a general point on the rough surface. The radius of
curvature is (a) large, (b) small in relation to the wavelength λ.

different frequencies f = 100 GHz, f = 1 THz, f = 10 THz. It is shown
that for lower wavelength, i.e., higher frequencies, such as 0.03 mm, a smaller
rc is required to be able to apply the theory. However, when one moves to
higher wavelengths, i.e., lower frequencies, such as 3 mm, larger rc are required,
meaning that the Kirchhoff theory is well suited for high frequencies such
as THz frequencies. Table 2.2 also demonstrates the impact of the angle of
incident, ϑ; for larger ϑ, larger rc are required.

Table 2.2. The required value of rc for the three given λ and three values of ϑ = π/6, ϑ to
be able to apply Kirchhoff theory

f = 100 GHz
(λ = 3 mm)

f = 1 THz
(λ = 0.3 mm)

f = 10 THz
(λ = 0.03 mm)

ϑ = π
6 rc >> 275.6 µm rc >> 27.56 µm rc >> 2.756 µm

ϑ = π
4 rc >> 337.6 µm rc >> 33.76 µm rc >> 3.376 µm

ϑ = π
3 rc >> 477.4 µm rc >> 47.74 µm rc >> 4.774 µm

For an infinite conductive surface, the Fresnel reflection coefficient is γ = 1,
meaning that in the case of a perfectly smooth surface, the reflected wave has
the same amplitude as the incident wave.
In order to find the scattered field E2 by evaluating integral equation (2.24),
we assume a rectangular surface area A = 4XY , i.e., with the dimension of 2X
in x and 2Y in y directions. Moreover, assuming the observation point B at a
distance far from the surface compared to the dimensions of the considered
area and as a result, −→k2 is constant over the entire surface. Hence, the distance
R′ in Fig. 2.10 can be computed as:

k2R
′ = k2R0 −

−→
k2 · −→r . (2.29)
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where R0 is the distance of B from origin. By substituting equations (2.26),
(2.27) and (2.29), in equation (2.24), the scattered field E2 can be found as:

E2 = E01ike
ikR0

4πR0

∫ X

−X

∫ Y

−Y
(ah′x + ch′y − b)ei

−→v ·−→r dxdy (2.30)

where −→v = −→k1 −
−→
k2 and

−→v = (vx, vy, vz) = k[(sinθ1 − sinθ2cosθ3)x̂− sinθ2sinθ3ŷ − (cosθ1 + cosθ2)ẑ]
a = (1− γ)sinθ1 + (1 + γ)sinθ2cosθ3

b = (1 + γ)cosθ2 − (1− γ)cosθ1

c = (1 + γ)sinθ2sinθ3
(2.31)

in which, h′x and h′y are the derivatives of the surface height in x and y
directions, respectively, considering that the rough surface is introduced by the
function h = h(x, y) where the mean level of the surface height is the plane
z = 0. By assuming a perfectly conducting surface, γTE = 1 and γTM = −1,
where TE refers to transverse electric modes of propagation of the incident
waves, TM refers to transverse magnetic modes of propagation, and then a,
b, c in equation (2.30) becomes independent of x and y. Moreover, in [23], a
scattering coefficient is introduced as:

ρ = E2

E20
(2.32)

where E2 is the scattered field and E20 is the field reflected in the direction of
specular reflection by a smooth, infinitively conductive plane with the same
area and under the same angle of incidence θ1 (θ1 = θ2 and θ3 = 0) at the same
distance. Notice that, for the direction of specular reflection vx = 0 regarding
to the fact that for a smooth surface h = h′ = 0, hence E20 can be found from
equations (2.31) and (2.30) as:

E20 = ikA cos θ1

π

eikR0

R0
, (2.33)

where A = lx · ly is the illuminated area and lx and ly are the side length of
area A. Moreover, from equations (2.30), (2.32) and (2.33) [23]:

ρ = F (θ1, θ2, θ3)
A

∫ ∫
A
ei
−→v ·−→r dA, (2.34)

where F (θ1, θ2, θ3) is the geometrical factor, which equation, given by Beckmann
and Spizzichino in [23] is

F (θ1, θ2, θ3) = 1 + cos θ1 cos θ2 − sin θ1 sin θ2 cos θ3

cos θ1 (cos θ1 + cos θ2) . (2.35)
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In order to derive quantitative results from eq. (2.34), a statistical description
of the random surface is needed, i.e., the height function h(x, y) should be
defined. Generally, the exact surface profile is not available. Note that even if
the surface profile is available, by using some methods, equation (2.30) is valid
only for that specific profile.
When the exact surface is not available, statistical models of surfaces are
typically adopted. Considering surfaces randomly rough with a Gaussian height
distribution may cover many surfaces in indoor environments [4]. Although
details on models will be given in chapter 3, it can be anticipated here that a
surface can be characterized using two parameters: σ and Tcorr. The standard
deviation of the heights distribution σ and correlation length Tcorr. Note
that the mean height of a random surface is assumed to be 〈h〉 = 0. The
parameter Tcorr is related to the auto-correlation function of the considered
random surface. We can consider as a sufficiently general auto-correlation
coefficient by the function:

C(r) = 〈h1h2〉
〈h1〉2

= e
−r2/T2

corr (2.36)

where h1 and h2 are the heights at two points on the surface p1 and p2 and
r refers to the separation distance bewtween those. The parameter Tcorr
represents the distance at which the auto-correlation function coefficient C(r)
drops to e−1 [23]. Tcorr controls the density of irregularities on the surfaces,
small values of Tcorr are related to very irregular surfaces, while larger values
of Tcorr are related to more regular surfaces. Surfaces with given profiles, i.e.
periodic surfaces, can be considered as realization of the adopted statistical
model and, therefore, their parameters σ and Tcorr can be estimated.
It is obvious from equation (2.30) that E2 and h are related and in [23] a
fully description of finding mean field < E2 > and mean scattered power
< E2E

∗
2 >=< |E2|2 > in any direction at a given angle of incidence has been

proposed. The mean power scattered in the direction of (θ2, θ3) with a given
angle of incident θ1 from an infinitely conductive rough surface with normally
distributed height h, mean value of < h >= 0, and standard deviation of σ,
and correlation length of Tcorr, is:

〈E2E
∗
2〉∞ = E2

01A
2 cos2 θ1

λ2R2
0

e−g ·
(
ρ2

0 + πT 2
corrF

2

A

∞∑
m=1

gm

m!me−
(v2
x+v2

y)T2
corr

4m

)
(2.37)

and regarding to equation (2.34) the mean scattered power coefficient 〈ρρ∗〉∞
is defined as [23]:

〈ρρ∗〉∞ = e−g ·
(
ρ2

0 + πT 2
corrF

2

A

∞∑
m=1

gm

m!me−
(v2
x+v2

y)T2
corr

4m

)
(2.38)

where
ρ0 = sinc(vxlx) · sinc(vyly), (2.39)



22 2. TeraHertz communications

and we introduce the Rayleigh roughness factor, g which is defined as

g = (vzσ)2 = k2σ2(cos θ1 + cos θ2)2. (2.40)

The Rayleigh roughness factor g is an indicator for the relative surface roughness
at a given wavelength: while a Rayleigh factor g � 1 indicates a smooth surface,
g ≈ 1 indicates a moderately rough surface and g � 1 refers to a very irregular
surface with noticeably diffuse scattering contribution. It is important to
notice that g depends only on θ1, θ2 and σ while it is independent from Tcorr.
Table 2.3 shows the variation of g for different frequency and σ values. For
the same values of σ, higher frequencies lead to higher Rayleigh’s roughness
factor. Moreover, by increasing σ at the same frequency, roughness increases.

Table 2.3. The variation of g for θ1 = θ2 = π/4 and three different values of σ = 0.05 mm,
σ = 0.15 mm and σ = 0.25 mm

f = 100 GHz
(λ = 3 mm)

f = 1 THz
(λ = 0.3 mm)

f = 10 THz
(λ = 0.03 mm)

σ = 0.05 mm g = 0.0219 g = 2.193 g = 219.3
σ = 0.15 mm g = 0.1973 g = 19.739 g = 1973.9
σ = 0.25 mm g = 0.5483 g = 54.831 g = 5483.1

Remind that the main limitation of applying the Kirchhoff theory is due to the
fact that the radius of curvature of the surface must be much greater than the
wavelength; that is, the illuminated area of the surface must be greater than
the wavelength, lx � λ, ly � λ, A� λ2 and obviously Tcorr � λ. As shown in
equation (2.38), the scattering coefficient of a surface contains can be roughly
divided into two parts: e−gρ2

0 is the coefficient related to the specular reflection.
As a matter of fact, the specular reflection component is approximately zero
except for a narrow θ2 range around θ2 = θ1. The second part of equation (2.38)
is the diffuse scattering coefficient, which is zero for a perfectly smooth surface,
for which g = 0, and becomes larger when the surface is rough.
Note that, for smooth (g � 1) and very rough (g � 1) surfaces, the exponential
series of in equation (2.38) can be approximated and therefore, for these two
specific surface condition, the mean scattering coefficient can be introduced as:

〈ρρ∗〉∞ = πT 2
corrF

2

Aσ2v2
z

· e−
(v2
x+v2

y)T2
corr

4σ2v2
z

for (g � 1)
(2.41)

and

〈ρρ∗〉∞ = e−g ·
(
ρ2

0 + πT 2
corrF

2

A
· e−

(v2
x+v2

y)T2
corr

4

)
for (g � 1)

(2.42)
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It is worth noting that the mean scattered coefficient does not only depend on σ,
A and λ, but also on Tcorr, θ1, θ2 and θ3 (see equation (2.38)). In order to show
the angular impact on the mean scattering coefficient for a rough surface, Fig.
2.12 shows < ρρ∗ >∞ at f = 300 GHz as a function of θ2, with θ2 ∈ [0 ◦, 90 ◦]
in steps of 0.01 ◦, for an infinite conductive surface with realistic material
parameters Tcorr = 0.18 mm, σ = 0.01mm, σ = 0.05mm and σ = 0.1mm,
θ1 = 30◦, θ3 = 0 and lx = ly = 20 · Tcorr. Figure 2.12 shows that the incident
power is mainly reflected in the specular direction. By getting far from the
specular direction, the mean scattering coefficient decreases rapidly, i.e. the
scattered power can be neglected in the directions having large deviations from
specular direction.

Figure 2.12. Mean scattering coefficient for a perfectly conductive surface at f = 300 GHz
with Tcorr = 0.18 mm and σ = 0.01 mm, σ = 0.05mm and σ = 0.1mm, the incidence
angle θ1 = 30◦, θ2 is varying from 0◦ to 90◦, θ3 = 0 and lx = ly = 20 · Tcorr

2.2.5 Mean scattering power for a finite conductive surface

Until now, only an infinite (perfect) conductive surface was assumed so that
this assumption leads to consider the Fresnel reflection coefficient γ = 1. This
assumption was used to make the quantities a, b, c in equation (2.30) become
constant, hence making it possible to evaluate the integral. However, in the
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real world, one will not face infinite conductive surfaces, and it is required to
find mean scattering power related to finite conductive surfaces. In order to
find a valid equation for the mean scattering coefficient in a finite conductivity
case, it is possible to approximate that equation by averaging the Fresnel
reflection coefficient over the entire surface area and using it as a constant
value < γ > in the equation (2.30).
The Fresnel reflection coefficient depends on the angle of incidence, the electrical
properties of the reflective material, and the incident wave’s polarization. Note
that, due to the lack of measured data related to material properties at high
frequencies [3], the analysis of scattering from a rough surface in this study
is limited to the frequencies up to 1 THz. Properties of the materials mostly
used in indoor environments were measured for the frequencies between 0.1
and 1 THz in [27, 2, 4].
The Fresnel reflection coefficient for a smooth surface and a specific polarization
can be found as [28]:

γTE(f) =
cos(θ1)− nc

√
1−

(
1
nc

sin(θ1)
)2

cos(θ1) + nc

√
1−

(
1
nc

sin(θ1)
)2
, (2.43)

γTM(f) =
−nc cos(θ1) +

√
1−

(
1
nc

sin(θ1)
)2

nc cos(θ1) +
√

1−
(

1
nc

sin(θ1)
)2

, (2.44)

where TE refers to transverse electric modes of propagation of the incident
waves, TM refers to transverse magnetic modes of propagation, and nc = n−iκe
is the frequency dependent complex refractive index in which κe denotes
extinction coefficient. Moreover, suppose we refer to TM and TM polarization
to the plane of incidence. We can easily find that horizontal polarization is
equivalent to TE polarization and vertical polarization is equivalent to TM
polarization. Moreover, it is possible to approximate equation (2.43) as:

γTE,approx(f) =
cos(θ1)− nc

√
1−

(
1
nc
sin(θ1)

)2

cos(θ1) + nc

√
1−

(
1
nc
sin(θ1)

)2

= −
1 + −2cos(θ1)

cos(θ1) +
√
n2
c − sin2(θ1)


≈ −

1 + −2cos(θ1)√
n2
c − 1


≈ −exp

−2cos(θ1)√
n2
c − 1

 .

(2.45)
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It is possible to approximate the Fresnel reflection coefficient, γ, by averaging
it over the whole surface and use it as a constant 〈γ〉. In this way, the mean
field, mean scattered power and mean scattering coefficient can be determined
as [23]:

〈E2〉f = 〈γ〉 · 〈E2〉∞, (2.46)

〈E2E
∗
2〉f = 〈γγ∗〉 · 〈E2E

∗
2〉∞, (2.47)

〈ρρ∗〉f = 〈γγ∗〉 · 〈ρρ∗〉∞. (2.48)

where subscript f indicates finite conductivity surface while subscript ∞ refers
to a perfectly conductive surface.
In order to compare Beckmann-Kirchoff scattering coefficient for smooth and
rough surfaces with the Rayleigh criterion, notice that the standard deviation
of the height of the surface σ is equivalent to the height h in the Rayleigh
criterion, and since sinφ = cos θ1, from how we defined the two different
reference systems, the Rayleigh criterion used for evaluating mean scattering
power, can be found as [23]:

〈ρρ∗〉∞ → 1, (2.49)

for
σ cos θ1

λ
→ 0. (2.50)

Finally, in order to use the Kirchhoff theory, it is essential to understand
the required assumptions used during the derivation of the theory. Here, a
summarization and discussion of these assumptions are proposed.

• In equations (2.37) and (2.38) a surface with normally distributed height is
assumed. Note that in [23] for other surfaces with other height distribution
or for periodic surfaces, the scattering model has been discussed.

• The radius of curvature of the surface irregularities must be much greater
than the wavelength. This assumption is required to approximate the
field at the surface.

• At the beginning a perfect conductive surface has been assumed in order
to make a, b, c in equation (2.30) constant.

• Approximate the Fresnel reflection coefficient as a constant by averag-
ing over the entire surface area and use it in equations (2.46), (2.47)
and (2.48) to compute mean scattered field, mean scattered power, and
mean scattering coefficient for finite conductive surfaces.

• It is assumed that the incident wave is not bouncing between surface
points in order to reach the receiver point, i.e. only one reflection is
assumed.
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• In this thesis, TEM waves are assumed and the mean scattered power for
perpendicular polarization is discussed. However for parallel polarization
also it can be found.

• It is assumed that the incident wave is a plane wave. When the emitter
is far enough from the surface relative to the size of the surface area, this
assumption is good.

• The original geometrical factor F (θ1, θ2, θ3) introduced by Beckmann and
Spizzichino [23] is equation (2.35). However, Vernold and Harvey [29] and
Nieto-Vesperinas [30] proposed two different Geometrical factors. Vernold
and Harvey [29] replace the F 2(θ1, θ2, θ3) in 〈ρρ∗〉∞ with cos θ2 from the
Lambert’s cosine law. And, Nieto-Vesperinas and Garcia [30] replace
the original Beckmann-Kirchoff geometrical factor F with FNV . A short
description of the geometrical factor introduced by Nieto-Vesperinas [30]
and Vernold and Harvey [29] is proposed in the following.

Vernold and Harvey modified geometrical factor

Vernold and Harvey [29] replace the F 2(θ1, θ2, θ3) in 〈ρρ∗〉∞ with cos θ2 from
the Lambert’s cosine law. The validity of the Modified B-K Theory was
demonstrated by its authors only for large negative values of θ2, for large
incidence angles θ1 and for scattering from infinitely conductive surfaces. It is
worth noting that replacing F 2(θ1, θ2, θ3) with cos θ2 in the case of perfectly
conductive surfaces enforces the boundaries conditions. As a matter of fact,
cos θ2 is zero in θ2 = ±90◦ and this forces the scattering coefficient 〈ρρ∗〉∞ to
be zero in θ2 = ±90◦, i.e. on the metallic surfaces. In the current literature
[31] [3] there is some confusion on this modification of the B-K Theory. Han et
al. and Ragheb et al. in their articles say that Vernold and Harvey proposed
to replace F 2(θ1, θ2, θ3) with cos θ1, but this cannot be possible since in [29]
the incidence angle θ1 is considered as fixed and, therefore, cos θ1 is a constant.
Thus, replacing the original geometrical factor F 2(θ1, θ2, θ3) with a constant
cause the loss of all the geometrical information about the scenario we are
analyzing.

Nieto-Vesperinas and Garcia modified geometrical factor

Nieto-Vesperinas and Garcia [30] propose to replace the original Beckmann-
Kirchoff geometrical factor F with

FNV (θ1, θ2, θ3) = 1 + cos θ1 cos θ2 − sin θ1 sin θ2 cos θ3

cos θ2 (cos θ1 + cos θ2) . (2.51)

They claim that FNV is the exact derivation of the geometrical factor, since
the original F does not conserve energy between the incident and the outgoing
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radiation. Moreover, note that

FNV (θ1, θ2, θ3) = cos θ1

cos θ2
F (θ1, θ2, θ3). (2.52)

From FNV it is easy to conclude that FNV → ∞ as θ2 → 90◦. It is also
noticeable that, while

F (θ1, θ2 = ±θ1, 0◦) = 1 + cos2 θ1 − sin2 θ1

2 cos2 θ1
= 1,

and

max
θ2,θ3

[F (θ1, θ2, θ3)] = F (θ1, 0◦, 0◦) = 1 + cos θ1

cos θ1(1 + cos θ1) = 1
cos θ1

,

while for FNV we have

FNV (θ1, θ2 = ±θ1, 0◦) = 1 + cos2 θ2 − sin2 θ2

2 cos2 θ2
= 1,

and
FNV (θ1, 0◦, 0◦) = 1 + cos θ1

1 + cos θ1
= 1.

Furthermore, it is worth noting that for surfaces with Tcorr such that k2 (cos θ1 + cos θ2)T 2
corr �

4, the envelope exponential term exp
(
−(v2

x+v2
y)L2

4m

)
in equation (2.42) slows

down the divergence introduced by FNV since it prevents scattered waves
at large scattering angles [30]. The derivation of FNV (θ1, θ2, θ3) is purely
theoretical and in [30] there is no practical demonstration of its validity.
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Chapter 3

An indoor channel model for
the THz band

3.1 Introduction

Due to the increased demand for higher data rates in wireless communications,
there is a tendency to use THz frequencies, which offer higher bandwidth and
higher capacity. Moreover, personal communication systems (PCS), wireless
local area networks (WLANs), cellular telephones, paging services, and wireless
sensing devices are being deployed in indoor areas on an increasing scale. Hence,
indoor communication is a vital consideration for wireless communications that
involve a broad range of scenarios from inside residential or office buildings,
hospitals, factories, etc. In an indoor environment, the transmitted signal
most often reaches the receiver from more than one path due to the reflection
by structures inside a building. The successful implementation of a wireless
network requires an exact understanding of the radio propagation characteris-
tics. As mentioned in chapter 2, THz frequencies have specific properties that
need to be considered. Moreover, indoor radio channels do not suffer from
environmental effects as do outdoor radio channels, for instance, snow, rain,
etc. But, because of the variation of building size, shape, structure, layout of
rooms, and most importantly, the type of surface materials, a unified channel
model is required, particularly for THz frequencies.
This chapter attempts to address the challenges of proposing such models. Due
to the variety of geometric configurations, it is impossible to represent all the
structures existing in the environment accurately. Accordingly, a mathematical
explanation of the problem needs to be added, taking into account various
potential situations, beginning with the characterization of a surface. In the
following, we first present the statistical description of the most commonly
used surfaces in indoor environments. Also, we discuss different methods
for generating randomly rough surfaces often used in indoor environments.
Then a multi ray propagation model is proposed, which includes THz band
characteristics.
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3.2 Surface model

In indoor propagation, surfaces do not generate only a reflected component but
rather a distribution of the reflections into different directions. It is necessary
to remind that this mechanism not only depends on the frequency of an incident
wave and polarization and angle of incidence but also surface characteristics.
As mentioned in chapter 2 the surfaces consider rough at high frequencies, i.e.,
THz frequencies, compared to lower frequencies.
In general, all possible surface models can be divided into two classes: surfaces
with given profiles and surfaces with random irregularities. In the first class,
the detailed profile can be determined by measuring the surface’s height at each
point. As already mentioned, due to the variety of geometric configurations, it
is impossible to describe all media and structures present in the environment
accurately. Therefore, it is necessary to introduce a statistical description of
rough surfaces, covering a wide range of possible scenarios. It is shown that
[4, 2] most indoor communication surfaces have a height distribution that
looks like a Gaussian distribution. Hence, the rough surfaces are modeled and
generated by a Gaussian random process. Rough surfaces can be characterized
by two parameters σ and Tcorr, in which σ is the standard deviation of the
height distribution of the surface and Tcorr is the correlation between the
heights of adjacent points. The shape of the surface is then determined by
the probability distribution of heights, which is assumed to be a zero-mean
Gaussian, and by the correlation length Tcorr, which provides information
about the density of the surface irregularities.

3.2.1 Standard deviation σ

The standard deviation σ is the most commonly used statistical height de-
scriptor that shows the variations in the height of a surface, i.e. hills and
valleys, relative to a reference plane. The reference plane is the mean level of
the heights of the surface and is considered as zero height. Figure 3.1, shows
two different surfaces with Gaussian height distribution in which each one
has different σ = 0.05mm and σ = 0.25mm. As expected, when the standard
deviation of the height of a surface is small, the surface resembles a smooth
surface (see Fig. 3.1a), while a larger σ leads to a rougher surface (see Fig.
3.1b). Figure 3.1c and 3.1d show the variation of the surfaces’ height for two
different σ = 0.05mm and σ = 0.25mm. Note that parameter σ concerns
the variation of the surface profile in the vertical direction only; it does not
provide any useful information about the distance between hills and valleys of
the surface, i.e., about the density of irregularities, that is described by the
correlation length parameter Tcorr, as described in the next paragraph.

3.2.2 Correlation length Tcorr

The correlation length Tcorr is the length over which the auto-correlation
function drops a small fraction of its value at the origin. To determine Tcorr,
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(a) Surface characterized by a Gaussian
random height distribution G(0, σ) with
σ = 0.05mm.

(b) Surface characterized by a Gaussian
random height distribution G(0, σ) with
σ = 0.25mm

(c) Projection of a surface characterized by
a Gaussian random height distribution
G(0, σ) with σ = 0.05mm.

(d) Projection of a surface characterized by
a Gaussian random height distribution
G(0, σ) with σ = 0.25mm.

Figure 3.1. Comparison between two surfaces with Gaussian height distributions. (a)
Surface with a small σ = 0.05mm resembles a smooth surface. (b) Surface with a large
σ = 0.25mm resembles a rough surface. (c,d) show the surfaces’ projection characterized
by Gaussian height distribution for σ = 0.05mm and σ = 0.25mm, respectively. Notice
that the generated random rough surfaces have the same Tcorr=2.3 mm.
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the auto-correlation function coefficient C(r) has to be computed first. Let the
height of the rough surface be a random function of x, i.e. one dimension only
h(x). Two different distributions h1 = h(x) and h2 = h(x+ r) are independent
if they are far enough from each other with a large value of separation parameter
defined by r = |x1 − x2|. Equation 2.36 defines the auto-correlation function
coefficient for random surfaces. It is noteworthy to mention that the surfaces
are assumed to be purely random. Therefore, C(r) decreases monotonously
from its maximum C(0) = 1, to its minimum C(∞) = 0. The correlation
length is defined as the value of r at which auto-correlation coefficient becomes
C(r) = e−1. Figure 3.2 shows the auto-correlation functions of two popular
surfaces (plaster and wallpaper) used in indoor environments. The correlation
length of 0.18 mm (see Fig. 3.2a) and 0.29 mm (see Fig. 3.2b) are found for
plaster and wallpaper samples [4], respectively. Figure 3.3 shows two surfaces

(a) (b)

Figure 3.2. Auto-correlation function C(r) for (a) plaster and (b) wallpaper. Correaltion
length Tcorr is defined as the value of r when C(r) = e−1, as shown on figure.

with the same height probability density function, i.e., same σ. However,
the two surfaces differ. The surface in 3.3a has a small Tcorr = 1mm, while
Tcorr = 5mm is large for the one shown in Fig. 3.3b. If the value of Tcorr is
large, the surface does not contain many irregularities (wallpaper). In contrast,
for small correlation distance, the irregularities of the surface are many and
closely packed (plaster). When the correlation distance is large enough, the
surface sections between irregularities can be considered smooth even if the
standard deviation σ of the heights is large.
It is worth mentioning that to assume that a surface is purely random is
critical. In particular, if the surface is periodic, the auto-correlation function
at each period is 1, i.e. the auto-correlation function does not decrease from its
maximum when r → 0, to its minimum, when r →∞. Moreover, it is required
to exclude the surfaces with white noise height distributions. A white noise
surface as follows from its correlation function, is discontinuous everywhere
and then its auto-correlation is zero at any value of separation parameter, i.e.
C(r) = 0 for r 6= 0, except zero (r = 0) where C(0) = 1.
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(a) Surface characterized by a Gaussian
random height distribution G(0, σ) with
σ = 0.25mm and Tcorr = 1mm.

(b) Surface characterized by a Gaussian
random height distribution G(0, σ) with
σ = 0.25mm and Tcorr = 5mm.

(c) Projection of a surface characterized by
a Gaussian random height distribution
G(0, σ) with σ = 0.25mm and Tcorr =
1mm

(d) Projection of a surface characterized by
a Gaussian random height distribution
G(0, σ) with σ = 0.25mm and Tcorr =
5mm

Figure 3.3. Comparison between two surfaces with Gaussian height distributions. For
both surfaces, σ = 0.25mm. The density of irregularities is high for a surface with small
(a) Tcorr = 1mm and is low for a surface with large (b) Tcorr = 5mm. (c,d) show the
projection of the surfaces generated in (a,b), respectively.
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3.3 Random rough surface (RRS) generator

For indoor propagation, most surfaces are considered Gaussian height distribu-
tion. In [32], it is shown that the Kirchhoff theory is a suitable approximation
to find the scattering power of an RRS. To consolidate Kirchhoff’s theory’s
results, here we generate an RRS according to the given σ and Tcorr. Then we
find the scattering power from the generated surface using the tangent plane at
each generated point. This method fully describes in detail in chapter 4. This
section only covers the methods of generating RRS. Note that different methods
are proposed in the literature to generate numerical random rough surfaces
such as the Newland method and the Hu and Tonder method, and Wu method.
Newland method [33] uses FFT, Hu and Tonder [34] use finite impulse response
(FIR) filters, convolution and FFT, and a modified FFT method proposed by
Wu [1] to generate a RRS. Although these methods cannot guarantee that
each profile of the generated surface has a correct auto-correlation function
(ACF), the generated surface’s average profile is very close to the given ACF.
It is shown in [1] that the Wu method leads to a better result for smaller Tcorr
compare to Hu and Tander and Newlands methods.
To better understand the mentioned methods, a short description of the Hu and
Tonder method and Wu method that can be used in this study is introduced
in the following. It is worth to recap that in this study for one-dimension
surfaces the height distribution is defined as a function of x, h(x), and for
two-dimension the height distribution of the surface is defined as a function
of x and y, h(x, y). The correlation distance Tcorr is defined as the length at
which ACF C(r) falls to exp(−1). The auto-correlation function of a surface
height distribution for one dimension is defined as:

C(ri,j) = exp

(
−r2

i,j

T 2
corr

)
, (3.1)

where ri,j is defined as
ri,j =

√
x2
i + y2

j ,

in which xi and yj are the coordinate of the point pi,j = [xi, yj] on the surface.

3.3.1 Hu and Tonder’s method

In this method, two-dimensional (2-D) Finite Impulse Response (FIR) filters
are applied to an input sequence of random numbers so that the output
sequence has a specific form of ACF. In other words, based on the given ACF,
filter coefficients corresponding to the specific ACF are applied to achieve the
expected correlation function [34]. FIR filters are an essential class of linear
systems used to transform the input sequence {η(I)} into an output sequence
{z(I)}. For two-dimensional systems, FIR filters are defined as:

z(I, J) =
n−1∑
k=0

m−1∑
l=0

ξ(k, l)η(I − k, J − l), (3.2)
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where ξ(k, l) is the coefficient of the FIR filters. Designing digital filter means
determining these coefficients. By taking the Fourier Transforms(FT) of both
sides of equation (3.2) one obtains

Z(ωx, ωy) = H(ωx, ωy)Ξ(ωx, ωy), (3.3)

where Ξ(ωx, ωy) and Z(ωx, ωy) are FT of the input sequence {η(I, J)} and
output sequence {z(I, J)}. H(ωx, ωy) is frequency response or transfer function
of the system that is

H(ωx, ωy) =
n−1∑
k=0

m−1∑
l=0

ξ(k, l)e−jkωxe−jlωy . (3.4)

Note that the coefficients ξ(k, l) for the general form of digital filters can be
obtained by calculating the inverse Fourier transform of a given H(ωx, ωy).
Once the filter coefficients are obtained, it is possible to generate a Gaussian
RRS using direct convolution equation (3.2) or using FFT equation (3.3).
The FFT method is more efficient than the convolution method in terms of
processing speed. Therefore, this study uses the FFT method, which is briefly
explained below. For more information about the convolution method and the
generation of non-Gaussian RRS, see [34].
Taking into account a random number generator to generate an input sequence
{η(I, J)}, the output sequence {z(I, J)} corresponding to the heights of the
random surface can be obtained by equation (3.2), which returns a surface with
specific ACF. If the input sequence is now Gaussian distributed, the output of
the system will have the same distribution, since the linear system does not
change its distribution.
The purpose of this study is to generate RRS based on the given ACF given
by equation (3.1). The Power Spectral Density (PSD) can be obtained by
taking two-dimensional ( 2-D ) Fast Fourier Transform (FFT) of ACF. In other
words, based on the given correlation distance of the surface, one can generate
the corresponding ACF and then generate the corresponding random rough
surface. Suppose that {η(I, J)} is an input series of Gaussian random numbers
with I = 0, ..., N − 1 and J = 0, ...,M − 1 that has to be filtered by a FIR
filter to generate an output sequence {z(I, J)} with an ACF of Rzz(k, l) with
k = 0, ..., n/2− 1, l = 0, ...,m/2− 1. Lx and Ly are the minimum powers of 2
greater than N+n-1, M+m-1, respectively. So, it is possible to generate RRS
in the frequency domain using the following procedure [34]:

• generate a new sequence {ηf(I, J)}, I = 0, ..., Lx − 1, J = 0, ..., Ly − 1,
where

{ηf (I, J)} = {η(I, J)}, I = 0, ..., N − 1, J = 0, ...,M − 1
{ηf (I, J)} = 0, I = N, ..., Lx − 1, J = M, ..., Ly − 1 (3.5)

• generate a new ACF sequence {Rf (I, J)}, I = 0, ..., Lx−1, J = 0, ..., Ly−1
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where 

{Rf (I, J)} = {Rzz(I, J)},
I = 0, ..., n/2− 1, J = 0, ...,m/2− 1

{Rf (Lx − I + 1, J)} = {Rzz(I, J)}

{Rf (I, Ly − J + 1)} = {Rzz(I, J)}

{Rf (Lx − I + 1, Ly − J + 1)} = {Rzz(I, J)}
I = 1, ..., n/2− 1, J = 1, ...,m/2− 1

{Rf (I, J)} = 0 otherwise

(3.6)

• compute the two-dimensional FFT {ηf(I, J)} to obtain the sequence
{Ξ(ωx, ωy)}, ωx = 0, ..., Lx − 1, ωy = 0, ..., Ly − 1

• calculate the two-dimensional FFT of the new ACF, Rf (I, J) to obtain
a real sequence Szz(ωx, ωy), ωx = 0, ..., Lx − 1, ωy = 0, ..., Ly − 1. Note
that Sηη(ωx, ωy) is PSD of input sequence and due to fact that the input
sequence is a random series of numbers, its spectral density is constant
Sηη(ωx, ωy) = C [34, 1]. Furthermore, the relationship between Sηη and
Szz for a linear system has the form of

Szz(ωx, ωy) = |H(ωx, ωy)|2Sηη(ωx, ωy), (3.7)

and to generate a random surface, one should define a filter with real
frequency response. Therefore to generate a real random surface, the
filter coefficient must satisfy

ξ(k, l) = ξ(−k, l) = ξ(−k,−l) = ξ(k,−l) (3.8)

finally the equation (3.7) change to

H(ωx, ωy) =
[
Szz(ωx, ωy)

C

]1/2

(3.9)

• compute the transfer function or frequency response of the filter {H(ωx, ωy)}
by applying equation (3.9), ωx = 0, ..., Lx − 1, ωy = 0, ..., Ly − 1

• compute new sequence {Z(ωx, ωy)} with ωx = 0, ..., Lx−1, ωy = 0, ..., Ly−
1 through complex product of {Hf (ωx, ωy)} and {Ξf (ωx, ωy)}
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(a) (b)

Figure 3.4. An example of a surface generated by the Hu and Tonder method for
Tcorr = 2.3mm and σ = 0.13mm. (a) The generated surface with Gaussian height
distribution. (b) Comparing the normalized height distribution of the generated surface
with N(0, σ = 0.13mm).

• calculate the two-dimensional IFFT of the new generated sequence
{Z(ωx, ωy)} to obtain the output sequence {z(I, J)}, I = 0, ..., N−1, J =
0, ...,M − 1 that has the specific ACF, Rzz(k, l).
Figure 3.4a shows a generated surface with given Tcorr = 2.3mm and
σ = 0.13mm in which Figure 3.4b shows the normalized histogram of the
height distribution of the generated surface which is well matched with
the normal distributions. Note that, this figure

It is worth mentioning that in Wu method [1], a set of independent random
phase angles uniformly distributed between 0 and 2π with some restriction is
defined to generate real RRS with specific ACF. The difference between Wu
and Newland method [33] is in defining spectral density and ACF in which in
Newland method circular ACF instead of the ACF. In [1, 33], each method is
fully described.

3.3.2 Wu’s Method

In his article [1], Wu proposed generating random surface using the Discrete
Fourier Transform (DFT) [1]. Starting from the given ACF, equation (3.1),
with the dimension of M ×N discrete points, we can obtain the power spectral
density S by applying 2-D DFT to R. Therefore,

Sk,l = 1
MN

M−1∑
r=0

N−1∑
s=0

Cr,se
−j2π( krM + ls

N ), (3.10)

with k = 0, 1, ...,M − 1 and l = 0, 1, ...., N − 1. Then, we add a random
phase φ to S. The random phases are uniformly distributed over the interval
φk,j ∈ [0, 2π]. In order to make the Fourier Discrete Inverse Transform real,
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there is a constraint on φ

φk,l = −φM−k,N−l. (3.11)

Finally, we get the random surface by inverse Fourier transforming S,

zp,q =
M−1∑
k=0

N−1∑
l=0

√
Sk,le

j2π( kpM + lq
N )+jφk,l . (3.12)

for p = 0, 1, ...,M − 1 and q = 0, 1, ...., N − 1. The surfaces generated using
this method have a height probability density function which is gaussian and
they have the desired autocorrelation function.

(a) (b)

Figure 3.5. An example of a surface generated by the Wu method [1] for Tcorr = 1mm and
σ = 5mm. (a) The generated surface with Gaussian height distribution. (b) Comparing
the normalized height distribution of the generated surface with N(0, σ = 5mm).

3.4 A multi-ray model for indoor THz propagation

To develop an optimal indoor wireless communication network for the THz
band, a unified channel model that precisely characterizes the THz frequencies
in an indoor environment is required. This section develops a multi-ray channel
model for indoor THz propagation by utilizing the ray-tracing technique. In
this model, the impact of free space attenuation beside the attenuation caused
by molecular absorption and scattering in THz frequencies is analyzed.
Notice that the THz band is highly frequency-selective due to high propagation
loss mainly because of transmission distance and the mixture of molecules
along the path (see chapter 2). In the ray-tracing technique, regarding the
analysis frequency, all the attenuation is computed. Since THz frequencies
have strong frequency dependence and high bandwidth; hence, the frequency
response can not be assumed to be constant within the entire bandwidth. One
possible approach to overcome this problem is using ray-tracing at different
frequencies and then combine the results [35]. This approach of dividing
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frequency range has been used firstly for Ultra Wide Band (UWB) systems
[36]. Before developing a multi-ray propagation model in the THz Band Here,
the same approach of dividing the band into several sub-bands in the frequency
domain has been applied for the THz band, as described in the next paragraph.

3.4.1 Sub-band method

The subband divided method’s main goal is the combination of many individual
sub-bands, which are considered narrow enough to allow us to assume flat
frequency response. Then, we apply the standard ray-tracing method to find
each subband’s delay profile with the analysis frequency considered as the
center frequency of each sub-band.
The sub-band divided method can be briefly described in the following steps
[36]:

• divide the whole bandwidth into several sub-bands. Each sub-band is
considered narrow enough to have constant frequency characteristics (i.e.,
flat frequency response).

• obtain a channel impulse response at each sub-band center frequency.

• calculate sub-band frequency response by using a Fourier Transform.
Then, combine all of the frequency responses for all the sub-bands to
reach complete frequency responses over THz bandwidth.

• at the end, the channel impulse response (CIR) over the entire THz
bandwidth can be obtained by taking an Inverse Fourier Transform.

3.4.2 Multipath channel model

Based on the statements above, a multi-ray propagation model in THz fre-
quencies is proposed by combining many subbands. Each sub-band has been
chosen narrow enough to have a flat frequency response. In the ith center
frequency, the narrow-band channel impulse response can be expressed as the
superposition of Ni delayed rays coming from all the walls in which the pth ray
experience attenuation as ai,p. By assuming t as the time of observing of the
impulse response and τ the delay of propagated ray, the CIR of the multi-ray
model is given by [37]:

hi(τ, t) =
Ni∑
p=1

ai,p(t)δ(τ − τp(t)), (3.13)

where τp(t) = dp
c
is the delay related to the pth path at time t. dp the traveling

distance and c is the speed of light.
In the special case, when the location of Tx and Rx are fixed and stationary
environments, i.e. when the channel is time-invariant, the time parameter
can be dropped. Then, the attenuation, ai,p, and propagation delay, τp(t), are
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independent of time t. Therefore, by considering the fixed position of Tx and
Rx and stationary environment, the linear time-invariant channel model is [37]:

hi(τ) =
Ni∑
p=1

ai,pδ(τ − τp). (3.14)

Note that the multi-ray indoor propagation includes LOS, reflected, scattered,
and diffracted paths [3]. In this study, we assume the LOS and scattered ones.
The channel model can be expressed as:

hi(τ) = a
(i)
LOSδ(τ − τLOS)ILOS +

N i
sca∑
p=1

ai,pscaδ(τ − τp), (3.15)

where ILOS is an indicator function and is defined as:

ILOS =
{

1 if there is a LOS propagation path.
0 otherwise.

Additionally, a reasonable approach to finding an impulse response adds linear
phase information to the transmittance [3]. Then the impulse response can be
obtained by taking the Inverse Fourier Transform (IFT) [38]. The multipath
channel frequency response that is the transfer function of eq. (3.15), is the
summation of the channel transfer function of LOS path, HLOS(f), and the
transfer function for scattering, Hsca(f). Notice that in the ith frequency
sub-band, the center frequency is denoted by fi.

LOS propagation

The LOS channel transfer function, HLOS(f), is made up of molecular ab-
sorption loss function HM , and free space attenuation loss function HFS, as
mentioned in eq. (2.13). HLOS(f) can be computed as:

HLOS(f, d) = |HLOS(f, d)| e−j2πfτLOS , (3.16)

where
|HLOS(f, d)| = |HFS(f, d) ·HM(f, d)|

= [AFS(f, d) · AM(f, d)]−
1
2 .

(3.17)

The free space transfer function can be obtained from equation (2.1) as:

HFS(f, d) = c

4π · f · d, (3.18)

and the molecular transfer function computed from equation (2.12) as:

HM(f, dl) = e−
1
2κ(f)d, (3.19)

where d is the LOS distance between Tx and Rx.
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NLOS propagation

In the case of NLOS propagation, the channel transfer function can be computed
from Eq. equation (2.18) as:

Htot(f, d) =
N∑
p=1
|Hp

FS(f, d)Hp
M(f, d)Hp

sca(f)| e−j2πfτ
p
NLOS , (3.20)

where d = d1 + d2 is the distance between Tx and the hit point on the surface,
d1, plus the distance between Rx and the hit point, d2. The scattering transfer
function Hsca, can be expressed as

Hsca(f) = γTM/TE · ρ(f) (3.21)

where γTE and γTM are the Fresnel reflection coefficients for TE and TM
waves, defined in equations (2.43) and (2.44), respectively. ρ is the Kirchhoff
scattering coefficient, defined in equation (2.42). Finally, by inserting HFS,
HM and Hsca in equation (3.20)), the total channel transfer function can be
express as:

Htot(f, d) =
N∑
p=1

Hp
sca(f) ·

(
c

4π · f · d

)
e−j2πfτ

p
sca− 1

2k(f)(dp), (3.22)

where τ psca is related to the delay of pth received ray with respect to the LOS
propagation time.
Moreover, the channel impulse response can be obtained from equation (3.14)
by combining equations (2.1), (2.12) and (2.48) or IFT of equation (3.22) as:

hi(τ) =
∣∣∣∣∣ c

4π · fi · d
e−

1
2κ(fi)d

∣∣∣∣∣ · δ(τ − τLOS)ILOS+

+
N

(i)
sca∑
p=1

∣∣∣∣∣
(

c

4π · fi · d
e−κ(fi)d

)
·Hp

sca(fi)
∣∣∣∣∣
p

· δ(τ − τ psca).
(3.23)

Figure 3.6a shows the variation of the molecular transfer function (equa-
tion (3.19)) as a function of frequency and traveling distance in an indoor
environment with RH= 70 %, temperature T = 298.55 ◦K, air pressure p = 1
atm and p0 = 1 atm, T0 = 273.15 ◦K. Meanwhile, Fig. 3.6b shows the FS
transfer function’s variation as a function of traveling distance and frequency
in dB. It is clear from Fig. 3.6b that for longer traveling distance, there is more
attenuation, more considerable transfer function; however, it is also shown that
at a higher frequency, there is more attenuation. Moreover, there are some
peaks in the path loss made by molecular absorption that made three spectral
windows in the range of 1 GHz and 10 THz, as depicted in Fig .3.6a. Finally,
to show the impact of traveling distance, including the molecular attenuation
in the different frequencies, Fig. 3.7 depicts the transfer function, path gain, in
the LOS case for different distances. It is shown that there are some peaks in
the path loss made by molecular absorption that made three spectral windows
in the range of 1 GHz and 1 THz, as depicted in Fig .3.7.
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(a) (b)

Figure 3.6. (a) Molecular loss transfer function at frequency range between 1 GHz and
1 THz, with respect to the lab environment parameters, RH= 70 %, temperature
T = 298.55 ◦K, air pressure p = 1 atm and p0 = 1 atm, T0 = 273.15 ◦K for different
traveling distances. (b) FS transfer function or path gain as function of frequency and
traveling distance.

Figure 3.7. Total transfer function at frequency range between 1 GHz and 1 THz, with
respect to the lab environment parameters, RH= 70 %, temperature T = 298.55 ◦K, air
pressure p = 1 atm and p0 = 1 atm, T0 = 273.15 ◦K for different traveling distances.
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Chapter 4

A Home-made ray-tracer for
evaluating the propagation of
THz EM waves

4.1 Introduction

The use of ray-tracing (RT) to model the propagation of radio waves in indoor
environments has been of great interest in recent years [39, 40, 41, 42, 4].
Several specific propagation characteristics such as scattering and molecular
absorption must be taken into account at THz frequencies. Using the ray-
tracing principle, one can predict the temporal and spatial characteristics of the
multipath channel with remarkable accuracy and model the effect of reflectors
and scatterers with precision. Distant-dependent path loss, atmospheric models,
and reflection models, such as those given in Sections 2.2.1, 2.2.2, and scattering
models, such as those mentioned in Sections 2.2.4, are also easily implemented
by ray-tracers.
A homemade ray-tracing simulator is proposed. The process of launching a
ray from Tx at a given angle and tracing its path in a particular direction,
whether or not it crosses an obstacle before the ray reaches Rx, is implemented
in this simulator. Of course, due to geometry, certain rays that are launched
in particular directions can not hit Rx.
As discussed in chapter 2, two parameters, i.e., g and Rayleigh criterion
(equation (2.17)), can be used as a roughness factor to show the degree of
roughness of the surface. Rayleigh criterion can also be written as:

σ <
λ

8 cos(θ1) . (4.1)

According to the surface degree of roughness, the scattering of an EM wave
can be divided into two categories. When the roughness is smaller than
the wavelength, the surface can be considered smooth, and the scattering
phenomenon is equivalent to specular reflection from a smooth surface. In
this case, the reflected wave follows Snell’s law, and the magnitude of the
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reflected wave can be computed by using the Fresnel reflection coefficients.
However, if the surface roughness increases diffuse components appear. Hence,
the reflected energy is distributed in other directions around specular direction.
One popular technique used in RT models is to modify the Fresnel reflection
coefficient with an attenuation factor only in the specular direction [38, 23].
This attenuation factor is based on the surface’s roughness level and can be
computed according to Kirchhoff’s theory, by which the reflection coefficient
for a rough surface for both TE and TM polarization becomes:

ΓTM/TE = γTM/TE · ρs, (4.2)

where ρs = e−g/2 · ρ0 is the coefficient related to the specular reflection which
can be written as:

ρs = exp

−8
(
π · σ · cos θ1

λ

)2
 . (4.3)

The main drawback of using this modified Fresnel reflection coefficient is that
it only gives the scattered field in a specular direction.
This thesis tries to present an RT-based method that takes into account
scattering from rough surfaces overcoming the previous drawback. Briefly,
after computing the paths of EM waves traveling between Tx and Rx, the
scattering field in all possible directions after each interaction between EM
waves and the environments is computed according to the Kirchhoff theory
[23]. The steps involved in developing the ray-tracer framework are:

• A detailed geometrical explanation of the construction is taken into
account.

• Define the building details, including the size of the room and size of
obstacles in order to find different surface planes. Each surface must have
its physical characteristics, such as height distribution and correlation
distance. Furthermore, each surface’s electromagnetic properties, such as
real and complex permittivity, conductivity, and dielectric constant, are
used to measure the reflection and transmission coefficients.

• Locate the position of Tx and Rx

• Compute the distance of the LOS path if it exists. In an indoor envi-
ronment, signal rays coming to the receiver may be line of sight (LOS)
signals and non line of sight (NLOS) signals reflected from walls, parti-
tions, ceilings, floors, and tables, etc.

• Use image method ray tracing to compute the virtual sources. (images of
Tx) and finding the reflection coefficient by applying Kirchhoff theory for
NLOS rays.

• Calculate the individual contribution of each ray received at Rx.
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• Calculate total E-field, received power and path loss, etc.

• Display results.

This chapter is structured as follows. First, ray-tracing methods, and
more specifically, image-based ray tracing are introduced in Section 4.2. A full
description of the indoor environment, including obstacles (walls), is proposed in
Section 4.2.1. Furthermore, in Section 4.2.2, the way of applying the Kirchhoff
theory in the ray-tracing simulator is introduced. Finally, the procedure for
computing the scattered power from a rough surface using generated RRS is
described in Section 4.2.3.

4.2 Ray-tracing method

A ray-tracing model uses the theory of Geometrical Optics (GO) based on the
Fermat principle to deal with reflection and transmission on a surface so that
signals are treated as ray propagation. The Fermat principle, also known as
the shortest path principle, asserts that a ray travels between two points along
the path that requires the least time than any other curve joining these two
points [43]. To determine possible ray propagation between Tx and Rx, it is
necessary to evaluate all the possible angles of launching rays from Tx and the
angles of arriving rays at Rx. Two types of ray tracing methods are presented
in the literature [44]: the brute force and the image method. The brute force
method is described as follows. Tx shoots a large number of rays that are
separated from each other by a small but constant angle in the 3D space.
Then, by assuming an imaginary sphere of small radius around the Rx point,
any ray that intersects this sphere is considered as a received ray. The brute
force method requires considerable computer resources to be implemented. By
the image method: it is assumed that every plane in an indoor environment
to be a mirror [44]. In image-based ray tracing, the computational time is
reduced, especially in simple environments, because only specular reflection
paths between the Tx and Rx are considered. In this thesis, in order to analyze
the indoor communications at THz frequencies, the image method is adopted.
Image methods calculate specular reflection paths by considering virtual sources
generated by mirroring the transmitter’s location over each environment’s
surface. The central concept is that a direct path from each virtual source has
the same condition and length as a specular reflection path. The recursive
generation of virtual sources can thus model specular reflection paths up to
any order. The model presented is based on the approximation that walls,
floors, and ceilings are assumed to be perfectly flat surfaces along with one
of the Cartesian coordinate axes. Furthermore, the rays can be ordered in
terms of the number of reflections. In this thesis, the number of reflections
is considered up to one reflection to help reduce the computational burden.
Signal rays approaching the receiver may be line of sight (LOS) signals and
reflected signals from walls, partitions, roofs, floors, tables, etc., i.e., NLOS
signals in an indoor environment. For LOS propagation, it is easy to find the
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Figure 4.1. Geometrical illustration of the image method for NLOS propagation with
Single-reflection and second-order reflection paths between Tx and Rx. Iw1 is the image
of Tx with respect to Face 1, Iw2 is the image of Iw1 with respect to Face 2.

ray path by connecting the Tx and Rx positions. However, for rays reflected
on the surfaces (walls) or obstacles, it is feasible to reach the Rx location from
Tx by considering more than one reflection from different walls and obstacles.
Figure 4.1 shows single and second-order reflections, in which a transmitted
ray arrives at Rx after reflecting once or twice on different walls. Consider the
single-reflection on face 1; in order to find the location of the reflection point
on the wall, i.e., the specular reflection point, one can use the image method.
In this method, the location of the specular reflection point is found as the
intersection between face 1 and the line passing through the Tx mirrored image
(Iw1 in Fig. 4.1) and Rx. In the case of two reflections, one first computes Iw1 ,
then in order to find the second reflection point, the mirrored image of Iw1

with respect to face 2 (Iw2 on Fig. 4.1) is computed. For multiple reflections,
the same procedure is applied until reaching Rx. Note that it is also possible
to find the position of the specular points by doing the reverse procedure, i.e.,
by moving from Rx to Tx to find the multiple-reflection path.
Figure 4.2 shows that by connecting source point (Tx), reflection (specular)
point, and receiver point (Rx), the single-reflection propagation path can be
obtained. The position of a specular point on the surface is defined by the
source point’s image regarding the surface plane, namely the Tx image. In this
figure, the surface is assumed to be located on the plane z=4, hence, the Tx
image can be only computed by changing the z coordinate of Tx. Moreover,
the intersection of the surface plane and the vector from the Tx image to Rx
shows the position of the specular point on the surface. For the rest of the
scatter points, their reflection in their specular direction will not reach Rx.
Furthermore, Fig. 4.2 clearly shows that the process of finding a specular
reflection point on each face is reversible. It can be found by moving from
Rx positions since the position of Tx, Rx, and their images are symmetric
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Figure 4.2. Tx image and Rx image are the transmitter Tx and receiver Rx image with
respect to the surface plane z=4, respectively. Any other point on the surface, like
scatter point, can not reach Rx specularly. Blue lines show the specular point on the
surface. Red lines show that the reflected ray from the scatter point will not reach Rx
and the dashed line indicates the line along the scattered ray deviated from its specular
direction to reach Rx from the scattering point.

(located on blue lines in Fig. 4.3). Note that in the case of specular reflection,
Tx, reflection point, and Rx are in the same plane, i.e., the plane of incidence
and θ1 = θ2 as shown in Fig. 4.3. However, for the other points on the surface
(scatter points), the scattered ray may reach Rx when θ1 6= θ2, and there could
also exist a deviation angle θ3. This procedure of finding Tx images should be
done for all walls, floor, ceiling, tables, and other considered obstacles inside a
room in order to find all the reflections.

4.2.1 Environment description

Consider an isotropic transmitter in a room which is assumed to be an empty
cube. The positions of Tx and Rx are fixed. As such, one ray may reach Rx
directly, following the LOS path, while others may reach Rx after multiple
reflections, following NLOS paths. Based on the image method, there is only
one specular point on each face at which the angle of incident θ1 and angle
of reflection θ2 are equal, and the deviation angle θ3 is zero. Therefore, there
are six specular points corresponding to the six faces of the room. Note that
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Figure 4.3. The blue line shows that the plane of incidence coincides with the plane of
reflection. The red line shows the plane of incidence at the scatters point, which is not
reaching Rx. The dashed line indicates the scattered plane in Rx’s direction deviated
from the incident plane on a scatter point by θ3.

all of the room faces are considered to have the same properties, although it
may be possible to consider different materials for each face. As a matter of
fact, because of the strong attenuation due to scattering, only single-reflection
paths are considered.
Figure 4.4 shows the Cartesian coordinates of Tx and Rx positions and the
corresponding six specular points on the six faces. The running example room
has a size of [x=8 m, y=8 m, z=8 m]. Tx’s position is [x=2 m, y=3 m, z=5
m], and the position of Rx is [x=4 m, y=4 m, z=6 m]. Faces are numbered
from 1 to 6 as shown in Fig. 4.5.
In the previous section, only specularly reflected rays have been determined.
For ray tracing leading to reasonable results, an appropriate scattering model
must be applied. The proposed ray-tracing tool implements a method based
on the Kirchhoff theory for THz frequencies [23, 4].

4.2.2 Implementation method based on Kirchhoff theory

Regarding the rough surface characteristics such as its statistical parameters
σ and Tcorr, its dimensions and its dielectric parameters, eq. (2.48) provides
the mean scattered power for arbitrary Tx and Rx positions. As mentioned
before, in the Kirchhoff theory, the incident electric field at the rough surface
is considered as a plane wave from the source. With respect to the position of
Tx and Rx and their short distances from the respective surface in an indoor
environment, the assumption of an incident plane wave in the Kirchhoff theory
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Figure 4.4. Geometry of the cubic room accompany with the position of Tx and Rx that
are shown with blue and red circles respectively. The six specular points on each face
are shown in different colored squares.

is only valid for a small surface area. Applying the computation only for a
single scattering point on the entire surface area, e.g., one of the faces would
lead to unreasonable results [45]. Therefore, instead of considering the surface
area’s whole, the surface is divided into N ×M smaller tiles, square tiles for
simplicity, as shown in Fig. 4.6 [4]. Note that separating the area into, for
instance, N ×M square tiles do not change the overall scattering power from
the entire surface, since a single tile has a power of 1

N×M of the overall power.
Let us consider the mean scattered power in the case of g ≈ 1, defined by
equation (2.37), which is the case of most indoor building material at THz
frequency. This equation can be divided into two parts:

S = A2 cos2 θ1

λ2R2
0
· e−gρ2

0,

describing the specular reflection component and

D = cos2 θ1

λ2R2
0
· e−g

(
AπT 2

corrF
2
∞∑
m=1

gm

m!me−
(v2
x+v2

y)T2
corr

4m ,

)

that is, the part related to the non-specular scattering. Note that the spec-
ular component has a quadratic dependence on the area A. Therefore, the
magnitude of the specular reflection can be varied arbitrarily with the tile
size. Consequently, user-defined tile sizes could potentially lead to physically
unreasonable results, especially in the case of lx and ly large enough to make
〈|E2|2〉 > 1, which corresponds to a scattering gain. Note that as the illumi-
nated surface increases, the width of the specular reflection main lobe decreases.
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Figure 4.5. Each face of the room has been numbered from 1-6.

As an example, for lx = ly = 100×Tcorr the half power beamwidth of ρ2
0 is 0.6◦,

while for lx = ly = 200× Tcorr half power beamwidth is 0.25◦. This behaviour
can be expected in real environments, where the illuminated areas are usually
way larger than Tcorr. Therefore, we can neglect the specular reflection compo-
nent for every scattered angle θ2 except for θ1 = θ2, where the amplitude of the
reflected ray needs to be corrected by the Rayleigh roughness factor e−g, since
in θ1 = θ2 we have ρ2

0 = 1. Furthermore, the non-specular scattering component
D, is linearly dependent on the illuminated area A. Therefore, separating the
whole area in j separate tiles reduces the power scattered from a single tile by
a factor j, while the overall power remains constant since j separate rays of
power proportional to 1/j are received. At THz frequencies for a typical indoor
building material such as plaster, wallpaper, and gypsum, a significant amount
of power is scattered around the specular point of reflection [23, 45, 4]. As
mentioned in Chapter 2, when getting far from the specular direction on a
rough surface, the scattered power strongly reduces [23, 45, 4]. Hence, only
the relevant scatter points near the specular point are considered to minimize
the computational time. Additionally, remind that only single-reflection paths
are considered. Note that the scattered area around the last specular reflected
point should be considered in the case of second-reflections or more.
In synthesis, only the surface area around the specular reflection point is
considered and is divided into N ×M smaller square tiles, as shown in Fig. 4.6.
As shown in [45], increasing the size of the scattered area does not improve the
accuracy due to the high attenuation of scattering from tiles that are far from
specular reflection. In this thesis, due to the above effect, the values of N and
M are M = N = 11, i.e., 121 tiles around the specularly reflected point are
considered. The specular reflection point is located in the center tile.
In order to apply the Kirchhoff theory, the size of tiles lx and ly must be

large compared to the wavelength of the incident ray. It is shown in [45] that
a sufficient size for each tile is lx = ly = 10 × Tcorr. Figure 4.6 shows the
geometry of the implemented method. Only the area around the specular
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Figure 4.6. Representation of the scattering area byM×N square tiles whereM = N = 11.
All the tiles have the size with side length of 10 × Tcorr and are located around the
center tile, that is the tile of the specular reflection point.

reflection point is considered. The area is divided into M ×N tiles in which
each tile has the side length of 10× Tcorr. The procedure is repeated for all 6
faces of the room. Totally, there are therefore 6× 121 scattered rays, including
6 specularly reflected ones, that are arriving at Rx. Consider face 1, with
no loss of generality, Fig. 4.7 shows the tiling of the surface related to face
1. Based on each tile’s size, the distance between two center points of each
tile is 10 × Tcorr. Note that each tile’s center point is considered for spatial
calculations such as finding θ1, θ2 and θ3, Time of Arrival (ToA), delay, and
path length of the scattered ray.
Figure 4.8a shows all the center points of the tiles around the specularly

reflecting point on face 1. Figure 4.8a also shows the intersection line between
face 1 and the plane made by the three points of Tx, Rx, and the specularly
reflect point on the surface. By zooming into the considered area, as shown
in Fig. 4.8b, it can be seen that there are 5 points where θ3 = 0, i.e., the
scattered ray lies in the plane of incidence. Remind that only one of these 5
points is related to the specular reflection point, which is the center tile where
θ1 = θ2. A good example of this condition is depicted in Fig. 2.12, where it
is shown that most of the reflected power focuses in the specular direction,
while the incident and reflected waves are in the plane of incidence (see Fig.
2.8a). For the rest of the tiles, the scattered rays must be deviated out of the
plane of incidence by the deviation angle θ3 in order to reach Rx. Note that
the deviation angle might be positive or negative. As shown in Fig. 4.8b, if
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Figure 4.7. On the right side, the cubic room’s geometry, TX position, RX position (with
blue and red circles, respectively), and all tiles around the specular point related to the
6 faces are shown. Moreover, each square tiles’ center point related to face 1 is shown
on the left side of this figure. In this scenario, M = 11, and therefore, there are M ×M
tiles on each face.

the scattered ray deviates to the left side of the intersection line made by the
plane of incidence to that tile and face 1, then, θ3 > 0. If it deviates to the
right side, then θ3 < 0, and if a scattered ray from a tile coincides with the
incidence plane, then there is no deviation and θ3 = 0.
In summary, to determine the scattered rays from surfaces, the following
procedure needs to be followed. Firstly, one needs to determine the specular
reflection points on each face by using the image method. Secondly, place
M ×N square tiles, with the same side length 10× Tcorr, around the center
tile of the specular point. Thirdly, calculate related parameters such as θ1, θ2,
θ3, ToA, delay, and so forth. Lastly, calculate the contribution of each tile to
the overall mean power reflection coefficient 〈|E2|2〉.

4.2.3 Implementation method using RRS generator

This section introduces a RT-based method that computes the scattering field
in the direction of Rx from the generated RRS. In this method, it is assumed
that the rough surface is composed of very small smooth planes tangent to
the roughness. The planes are made by three points on the surface generated
by the RRS generator algorithm. The local incident angle to each plane is
then computed regarding the local normal vector to that plane. Figure 4.9
shows the normal vectors of a small part of the generated surface using the Hu
and Tonder algorithm mentioned in Section 3.3.1. Based on this assumption,
the field reflected off each local plane can be expressed as E2 = γE1. Hence
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(a)

(b)

Figure 4.8. The intersection line between face 1 and the plane is made by Tx point,
Rx point, and scatter point. (b) If the scattered ray’s projection coincides with the
projection of the incident plane on the face 1, then θ3 = 0. If the scattered ray deviates
to the left side of the projection of the plane of incidence, then θ3 > 0, and if the
scattered ray deviates to the right side, then θ3 < 0. There are 5 points that θ3 = 0 and
for the rest, there exist a deviation angle θ3 6= 0.
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Figure 4.9. Normal vectors at each point on the surface regarding the plane at that point.

the generated surface is divided into N number of planes. It is then required
to make a coherent sum of all the scattered fields’ contributions with a small
solid deviated angle ∆θ from a specific direction reaching Rx. If, n out of N
number of small planes direct the scattered field to Rx, then:

−→
E 2 =

n∑
i=1

−→
E 2i (4.4)

where −→E 2 is sum of all contributions reached Rx. Note that, the scattered field
around the specific direction related to the ith small plane of N total planes is

−→
E 2i = 1

N
γ
−→
E1. (4.5)

In order to apply the proposed method in the considered environment, the
first step is to find the specular reflection point for each faces with a given
Tx and an Rx position. In the second step, the RRS needs to be centered on
the specular point related to each face. Then, for each point of the generated
RRS, the tangent plane at that point is computed. Consider two-dimensions
scattering as shown in Fig. 4.10, θ1l depicts local incidence angle respecting to
the local normal vector to the local plane. Based on law of reflection θ2l = θ1l.
In this figure, the angle between the incident ray and scattered ray reaching
Rx from the point on the local surface is θs. Hence, if the difference between
θs and θ2l + θ1l is bigger than the defined threshold, the reflected ray is not
considered as a received ray at Rx. Note that in 3-D, another angle θ3 needs to
be considered since for specular reflection, the incident ray and the scattered
ray must be in the same plane.
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Figure 4.10. Reflection from a tangent plane at a point of the surface. θ1l is local incidence
angle with respect to the normal vector to the local plane −→nl . θs is the angle between
incoming ray and scattered reaching Rx position.

Considering only the Fresnel reflection coefficient to compute scattered field in
the specular direction from each plane E2, could not lead to appropriate results.
Therefore, to find E2, the Fresnel reflection coefficients need to be multiplied
by the Rayleigh roughness factor ρs, as discussed in Section 5.2. Regarding
this point of view, in [46, 47], the micro-facet based model, which inherits all
the assumptions and limits of the Kirchhoff theory, has been proposed. In
this model, the overall scattered field is obtained by the coherent sum of all
the contributions of the reflected fields encapsulated in a small solid angle ∆θ
around a specific scattered direction, which considers the interference of the
possible various heights of the corresponding micro-facets [46]. However, in
this thesis, we will not use this method, and one refers to [46, 47] for more
information.
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Chapter 5

Performance analysis

5.1 Introduction

This chapter covers the simulation results obtained by using the proposed
ray tracing tool. We start by showing a comparison between the measured
reflection coefficient in the specular direction (available in [2]) and the theory,
for a considered material, plaster (plaster s2), that is commonly used in indoor
environments in Section 5.2. Then, the influence of specific parameters such as
θ1, θ2, θ3, σ, Tcorr, g, size of the room and frequency on the received power are
discussed in Section 5.3. Finally, Section 5.4 analyses the power delay profile
and the frequency-dependent channel impulse response (CIR) at each center
frequency.

5.2 Comparison between measurements and analysis

5.2.1 Specular reflection coefficient

The measured absorption coefficient α and refractive index n of the considered
material that is for example plaster, can be used to compute the specular reflec-
tion coefficient. Hence, in order to verify the validity of the computed specular
reflection coefficient, one may compare these results with THz time-domain
measurements performed in [2].
Figure 5.1 shows the measured refractive index n (Fig. 5.1a) and absorption
coefficient α (Fig. 5.1b) of plaster (plaster s2), that is most commonly used
in indoor environments [2]. Note that one can compute the Fresnel reflection
coefficient for either TE or TM polarization using these measured data. Con-
sider TE polarization, the Fresnel reflection coefficient based on either the
theory γTE or approximation γTE,approx can be computed by equation (2.43)
and equation (2.45), respectively. The extinction coefficient κe used to compute
frequency dependent complex refractive index nc, can be expressed in terms of
the absorption coefficient α as:

κe = α · c
4 · π · f . (5.1)



58 5. Performance analysis

In order to compute the reflection losses of a surface in the specular direction,
the use of Fresnel reflection coefficient alone will not lead to reasonable results.
The Fresnel reflection coefficients need to be multiplied in fact by the Rayleigh
roughness factor ρs = e−g/2 · ρ0, that can also be written as ρs = e−g/2 since
in the specular direction ρ0 = 1 (see Section 2.2.3). Therefore, the specular
reflection coefficient ΓTE/TM can be computed from equation (4.2), and the
approximated specular reflection coefficient for TE polarized waves can be
computed as:

ΓTEapprox = ρs · γTE,approx. (5.2)
The computed magnitude of the Fresnel reflection coefficient for TE polariza-

(a) (b)

Figure 5.1. Measurement of (a) refractive index n and (b) absorption coefficient α of
plaster [2]

tion γTE, the specular reflection coefficient ΓTE, as well as a direct measurement
of the specular reflection coefficient for plaster [2] are shown in Fig. 5.2 for
two different angles of incidence 25◦ (Fig. 5.2a) and 60◦ (Fig. 5.2b) and in
frequency range between 100 GHz and 1 THz. The directly measured data are
shown for the comparison between the theory and measurements. Figure 5.2
shows that the reflection coefficient computed by considering only the Fresnel
reflection coefficient strongly deviates from the measured reflection coefficient
in the specular direction as frequencies increase. However, there is a good
agreement between the computed specular reflection coefficient based on the
theory ΓTM/TE and the measured specular coefficient for plaster.
The approximated specular reflection coefficient (equation (5.2)), that is

based on applying Taylor’s approximation, shows good accuracy in the THz
band in the case of large angles of incidence θ1; however, for small θ1, the
accuracy decrease as shown in Fig. 5.3.
Figure 5.4 shows a comparison between the amplitude of specular reflection
coefficient power computed with the approximation (Γapprox · Γ∗approx)TE or
the theory (Γ · Γ∗)TE (in dB). Additionally, the directly measured values for
the frequency range between 100 GHz and 1 THz and two different angles of
incidence 25◦ and 60◦ are also shown in this figure. Note that since we could
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(a) (b)

Figure 5.2. The red curve shows the magnitude of the specular reflection coefficient ΓTE .
The dotted curve is the computed Fresnel reflection coefficient γTE , and the blue curve
is the direct measurement of plaster for a frequency range between 100 GHz and 1
THz. The comparison is made for two different angles of incidence (a) θ1 = 25◦ and
(b) θ1 = 60◦. The measured data are from [2]. Computing the reflection coefficient by
considering only the Fresnel reflection coefficient strongly deviates from the measured
reflection coefficient in the specular direction as frequencies increase. While the specular
reflection coefficient ΓTE almost fits the measurements.

Figure 5.3. Computed Fresnel reflection coefficient for plaster at 300 GHz for TE po-
larization. The red curve shows the Fresnel reflection coefficient computed based on
the theory γTE (equation (2.43)), and the dotted curve shows the computed Fresnel
reflection coefficient regarding the approximation γTE,approx (equation (2.45)). The
curve of γTE,approx almost fits γTE except in lower θ1 that slightly reduce its accuracy.

not take the measured data from the authors of [2, 3], the measurement shown
in this figure is obtained visually from the figures given in [2]. Especially for
θ1 = 25°, the measured data for the frequencies over 500 GHz is interpolated



60 5. Performance analysis

from [3] since it was impossible to take out the measured values from [2].
Figure 5.4 shows that the approximation and the theory are well matched.
In particular, there is a good agreement between the approximation, the the-
ory and the measured data. Furthermore, for a given angle of incidence the
specular reflection coefficient power decrease by increasing frequencies. This
is expected because by increasing frequency, the roughness of the material
(shown by roughness factor g) increases and then scattering losses in specular
direction will increase too.
Figure 5.5a shows the calculated magnitude of specular reflection coefficient

Figure 5.4. Specular reflection power coefficient for plaster based on the approximation
and theory as a function of frequency for two different angles of incidence 25◦ and 60◦
in dB, measured data is from [2]

from theory and approximation as well as the directly measured values for
plaster as a function of incident angle for TE polarization at the frequency of
350 GHz. A good agreement between the theory, approximation and measure-
ments is witnessed. Moreover, the amplitude of specular reflection coefficient
of power based on the approximation and theory together with the directly
measured values [2] are shown in Fig. 5.5b in dB. This figure shows that the
approximation and theory are well matched, and they almost coincide with
the measurement. The same comparison has tried to be done in [3], but it
seems to be not precise because the calculated values related to the 300 GHz
are compared with the measurement at 350 GHz. Figure 5.6a depicts the
comparison made by [3]. It seems that a mistake has happened since the
measured data at 350 GHz is compared with the theory and approximation at
the frequency of 300 GHz. Figure 5.6b shows the amplitude of the reflection
coefficient regarding approximation and theory for the frequency of 300 GHz,
including the measured data of 350 GHz. It can be seen from Fig. 5.6 that the
proposed figure by [3] (Fig. 5.6a) is related to the frequency of 300 GHz while
the measured values are for the frequency of 350 GHz. Moreover, considering
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(a) (b)

Figure 5.5. (a) Magnitude of reflection coefficient of plaster as a function of incident angle.
(b) Specular reflection coefficient power of plaster as a function of incident angle. The
red curve shows the approximation, and the dotted curve is theory. The measured data
is shown by ’x’ and is from [2].

Fig. 5.6a and Fig. 5.6b, it seems that a mistake has happened in the measured
data at θ1 = 30° in Fig. 5.6a (proposed by [3]), regarding the measured data
taken from [2] shown in Fig. 5.6b.

(a) (b)

Figure 5.6. Amplitude of the reflection coefficient of plaster as a function of incident
angle. (a) The computation is performed in [3] at the frequency of 350 GHz. (b) The
computation is based on the measured data taken from [2] and the proposed theory and
approximation. The red curve is for theory, the dotted curve shows the approximation,
and ’x’ values are measured data [2]. It shows that the computation performed in [3]
seems to be for the frequency of 300 GHz while the measured data are for 350 GHz.
Moreover, the measured value at θ1 = 30° seems not to be correct in (a) (the figure
proposed by [3]).

Figure. 5.7 shows the specular reflection power coefficient as a function of
θ1 for different frequencies. It shows that the specular reflection loss grows
either by increasing frequencies or when the incident wave tends to become
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perpendicular to the surface, i.e., θ1 → 0.

Figure 5.7. Specular reflection coefficient power of plaster as a function of incident angle
for THz frequencies from 100 GHz to 1 THz.

5.2.2 Scattering coefficient

As mentioned in Section 2.2.5, the mean scattering power coefficient for a finite
conductive surface 〈ρρ∗〉f , can be computed by equation (2.48). Regarding
Taylor’s approximation, that is:

ex =
∞∑
n=0

xn

n! = 1 + x+ x2

2! + x3

3! , (5.3)

one can approximate the e−g used in computing 〈ρρ∗〉∞ (equation (2.38)) as:

e−g = 1
1 + g + g2

2 + g3

6

. (5.4)

Moreover, in the case of g ≈ 1, the series
∞∑
m=1

gm

m!me−
(v2
x+v2

y)T2
corr

4m (5.5)

used to compute 〈ρρ∗〉∞, converges quickly since 1/m!m → 0. However, the
convergence of the series depends on σ, i.e., for smaller σ it converges faster
(after two terms) while for larger σ it converges after more terms as shown in Fig.
5.8. Moreover, regarding equation (2.38), the geometrical factor F 2(θ1, θ2, θ3)
has been used to represent the scattering geometrical aspect of the surface. As
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(a) (b)

Figure 5.8. Convergence of the series used computing 〈ρρ∗〉∞ when (a) σ = 0.015mm and
(b) σ = 0.15mm. For a small value of σ, the series converges fast, while for a large value
of σ, the series converges after more terms.

mentioned in 2.2.5, two different geometrical factors have been proposed in the
literature [29, 30] that can be replaced in equation (5.4). In [29], the F factor
squared F 2 has been replaced with cos(θ2).
Figure 5.9 shows diffuse scattering measurements carried out by [48] and
compares the modified mean scattering coefficients proposed by [29] (Vernold
modified theory) and the original Beckman scattering coefficient [23] (Beckman
theory). Figure 5.9a compares the mean scattered power coefficient of the two
models considering a small θ1 = 20° and λ = 0.633µm, an area with a diameter
of 20 mm, σ = 2.27µm, Tcorr = 20.9µm. Results show good agreement
with experimental scattering data of perfectly conductive rough surfaces,
especially for large angles of incidence and scatter angles. It is shown that the
measurements have a Gaussian-like distribution and are symmetric about the
direction of the specular reflection. Moreover, the fit of the theories (Beckman
theory and Vernold modified theory) and measurements is considerably good
for small θ1 as shown in Fig. 5.9a. Figure 5.9b shows the same comparison but
for larger θ1 = 70°. It can be seen that the Vernold modified theory has better
agreement with the measured data, especially for larger scattering angles where
the original theory deviates more.
Note that because in our analysis only the limited region around the specular
point of reflection has been considered, and following the above statements
that both theories are well fitted for the measurements around the specular
path, either of these theories could be applicable. Note that in these figures,
the reflected angles have been shown with a negative sign.
In [3], the author applied the modified geometrical factor together with Taylor’s
approximation in defining the mean scattering power coefficient. Moreover,
only up to the second term of the series (equation (5.5)) was considered.
Furthermore, in order to find the mean scattering power coefficient for a finite
conductive surface 〈ρρ∗〉f , the approximated Fresnel reflection coefficient is
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(a) (b)

Figure 5.9. Comparison between mean scattering power coefficient considering original
and modified geometrical factor for (a) small θ1 = 20°, and (b) large θ1 = 70°. In both
cases λ = 0.633µm, scattered area’s diameter is 20 mm, σ = 2.27µm, Tcorr = 20.9µm.

multiplied by 〈ρρ∗〉∞. Hence, one can compute the mean scattering power
coefficient as:

〈ρρ∗〉f =(
−exp

−2cos(θ1)√
n2
c − 1

 ·
√√√√ 1
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·

√√√√ρ2
0 + πT 2
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lxly

(
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4 e
−vs/2

))2

(5.6)

Figure 5.10 shows a comparison between the mean scattering power coefficient
computed from the Kirchhoff (Beckman) theory and the modified one computed
by equation (5.6). In this figure < ρρ∗ >f as a function of θ2 ∈ [0 ◦, 90 ◦], in
steps of 0.01 ◦, for plaster s2 with a refractive index of nc = 2.24 − j0.025,
the correlation length of Tcorr = 0.18 mm, and the height standard deviation
σ = 0.088mm is shown [4, 3]. The computation has been done at the frequency
of f = 300 GHz over an area with a side length of lx = ly = 20 · Tcorr
when θ1 = 30°. Figure 5.10 shows a good agreement between theory and
approximation around specular direction while this agreement breaks by moving
far from specular reflection. The computed mean square error (MSE) for
approximation is about 1.338[dB]. Note that the MSE for the area around
specular reflection, i.e. when 20° ≤ θ2 ≤ 40° is about 0.338[dB]. Hence, the
approximation is fitted with the theory around specular reflection.
Figure 5.11 indicates that the approximated model is acceptable sinceMSE ≈

0.26[dB] in the THz frequency range. Moreover, by fixing the scattered angle
θ2, the scattering loss increases with the frequency non-monotonically up to
0.7 THz.
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Figure 5.10. Comparing mean scattering power coefficient calculated from theory (equa-
tion (2.48)) and approximation equation (5.6) for plaster. The parameters used are [4]:
refractive index nc = 2.24− j0.025, the correlation length Tcorr = 0.18 mm, the height
standard deviation σ = 0.088mm, f = 300 GHz, θ1 = 30° and θ2 ∈ [0 ◦, 90 ◦] in steps of
0.01 ◦ , lx = ly = 20 · Tcorr.

Figure 5.11. Comparing the mean scattering power coefficient calculated from theory
(equation (2.48)) and approximation equation (5.6) for plaster as a function of frequency.
The refractive index and absorption coefficient are from Fig. 5.1 [2], Tcorr = 0.18 mm,
σ = 0.088mm, θ1 = 30° and θ2 = 40°, lx = ly = 20 · Tcorr.
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5.3 Impacts of environmental parameters on diffuse scat-
tering

The proposed ray-tracer typically considers 121 tiles around each specular
reflection point on each face of the room (see chapter 4). The six faces of the
room are numbered from 1-6, as illustrated in Fig. 4.5. All the faces have
the same properties. The center point of each tile is considered for computing
incident, scattered, and deviation angles. Remind that the Rayleigh roughness
factor g was introduced as an indicator for relative surface roughness at a given
frequency (see chapter 2). The Rayleigh roughness factor depends on σ, θ1,
and θ2, as shown in equation (2.40).
Figure 5.12 shows the impact of σ on the mean scattering power coefficient for a
finite conductive surface on face 1 with Tcorr = 2.3mm, n = 1.97, α = 7.3cm−1.
Two different value of σ = 0.088mm (see Fig. 5.12a) and σ = 0.25mm (see
Fig. 5.12b) are compared. Note that we assumed an empty room with the size
of [X=8 m, Y=8 m, Z=8 m] with the Tx and Rx located at Tx=[X=2 m, Y=3
m, Z=5 m] and Rx=[X=4 m, Y=4 m, Z=6 m]. Hence, all the angles θ1, θ2, θ3
are computed for each tile separately for face 1 with respect to the position
of Tx and Rx. The incident angle for each tile changes around θ1 ≈ 13.9527°
which is related to the center tile. It shows that when the surface is smooth,
most of the reflected power is in the specular direction, center point (see Fig.
5.12a). Figure 5.12a shows that when one gets far from the specular point,
the scattered power in the Rx direction from neighbor tiles reduces. However,
Fig. 5.12b shows that there is no dominant reflection in the specular direction
when the surface is rough. Note that in either Fig. 5.12a and Fig. 5.12b, there
are five points for which θ3 = 0 ( θ3 = 0 and θ2 have 5 different values, crossed
by the dashed line) but only the center tile, i.e., only the tile with θ1 = θ2 has
the most amount of mean scattered power that is expected since for specular
reflection not only θ3 = 0 but also θ1 = θ2.
In order to show the impact of Rayleigh roughness factor g, Fig. 5.13 shows
the mean value of the relative roughness factor g for face 1 and face 2 for a
given value of σ = 0.088mm. Due to the short distance between the tiles, the
variation of g with face is small as shown in Fig. 5.13a and Fig. 5.13b for face
1 and face 2, respectively. However, the variation of g can be greater from one
face to another with respect to Tx and Rx position since θ1 and θ2 change.
Assuming all the faces with the same geometrical and material characteristics
such as same Tcorr, σ, and material, only Tx and Rx position impact g.
Note that in Fig. 5.12 and Fig. 5.13, the squares look distorted. This distortion
is related to the position of Tx and Rx. Since the positions of Tx and Rx are
not well aligned with the scattering surface in this scenario, as shown in Fig.
5.14a, moving through the tile leads to non-symmetric shapes.
Figure 5.15 compares the value of the g for all faces considering fixed position
of Tx=[X=2 m, Y=3 m, Z=5 m] and two different positions of Rx=[X=4 m,
Y=4 m, Z=6 m] shown in Fig. 5.15a and Rx=[X=7 m, Y=7 m, Z=1 m] shown
in Fig.5.15b. Note that the dependence of scattering on g is mostly on σ and
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(a) (b)

Figure 5.12. Comparison between mean scattering power coefficient for (a) small σ =
0.088mm, and (b) large σ = 0.25mm. In both cases Tcorr = 2.3mm, n = 1.97 and
α = 7.3cm−1. All the angles θ1, θ2, θ3 are computed for each tile separately for face
1 regarding the position of Tx and Rx. For a smaller σ, i.e., smoother surface, most
of the scattering power is related to the center tile. On the contrary, for larger σ, i.e.,
more rough surface, one faces diffuse scattering as shown in (b) specular reflection is not
dominant anymore. The dashed line between shows the plane made by Tx and Rx and
specualr point that is crossed with 5 tile in which θ3 = 0°.

(a) (b)

Figure 5.13. Variation of g considering σ = 0.088mm for (a) face 1, and (b) face 2. The
variation of g is small for each face; however, this variation is larger by moving from one
face to another depending on Tx and Rx’s position. Moreover, the location of Tx and
Rx can change the amount of g.

λ, as shown in Table 2.3. The variation of g is higher when σ has changed, as
shown in Fig. 5.12, where one witnessed g ≈ 1.151 for smaller σ = 0.088mm
and g ≈ 8.22 for larger σ = 0.25mm.
To show the effect of the incidence angle on the scattering coefficient, all faces
are shown in Fig. 5.16 (Fig. 5.16a-f are related to face 1-6, respectively). In
Fig. 5.16, σ = 0.088mm and the rest of the parameters are the same as the
ones used in Fig. 5.12. Each face has a different angle of incidence with respect
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(a) (b)

Figure 5.14. The geometry of the position of Tx, Rx, and the tiles on face 1. a) Since the
position of Tx and Rx are not well aligned with the scattering points on face 1 in this
scenario, moving through the tile would not lead to having a symmetric shape in Fig.
5.12 and Fig. 5.13. b) Moving toward Rx, θ2 becomes smaller.

(a) (b)

Figure 5.15. Variation of g considering σ = 0.088mm for all faces considering a fixed
position of Tx and (a) Rx=[4m 4m 6m] and (b) Rx=[7m 7m 1m]. The variation of g is
small for each face; however, this variation is larger when moving from one face to the
other depending on the position of Tx and Rx

to the position of Tx=[X=2 m, Y=3 m, Z=5 m] and Rx=[X=4 m, Y=4 m,
Z=6 m]. Most of the power is reflected in the specular direction of the center
tile. Figure 5.16 shows the points located in the plane of incidence in red color.
It shows that depending on the position of Tx and Rx, there could be more
points that have θ3 = 0 but only specular reflection where θ1 = θ2 has most of
the power in the case of smooth surfaces. Figure 5.16b shows that the mean
scattered power reflection coefficient for the largest θ1 is related to face 2 and
Fig. 5.16e shows that the mean scattered power reflection coefficient for the
smallest θ1 is related to face 5. It is shown in Fig. 5.16 that in the case of
larger θ1, there is more attenuation due to increasing mean scattering power
coefficient at the Rx.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.16. Comparison of mean scatter power coefficient for finite conductive surfaces
all faces (a-f) at the frequency of 300 GHz and σ = 0.088mm, Tcorr = 2.3mm. The
larger θ1, the more attenuation witnessed. The size of the room is assumed to be [8m
8m 8m] with Tx and Rx located at Tx=[2m 3m 5m] and Rx=[4m 4m 6m]. Note that θ1
is computed for each tile separately and varies around the one related to the center tile.
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5.4 Delay profile

Figure 5.17 shows how a transmitted ray (Dirac pulse)arrives at the receiver
with different signal strengths as it travels through the different paths inside
the room with different propagation delays. The delays are computed with
respect to the LOS path. Remind that due to high scattering loss, only the first
order of scattering is considered. The incoming rays can be clustered into 6
different groups related to each face; hence, regarding the assumed 121 number
of tiles in each face, there are 6× 121 attenuated delayed rays coming from
all faces. All the incoming rays experience attenuation caused by molecular
absorption and free space (discussed in chapters 2 and 3, respectively) and
diffuse scattering (see equation (3.14)). Depending on the position of Tx and
Rx, the incoming rays arrive in a different order. In this scenario, incoming
rays from face 2 arrive first, and the rest arrive in the following order of face 6,
face 3, face 1, face 5, and face 4, as shown in Fig. 5.17 The parameters used
for the computation are: the room size of [X=8 m, Y=8 m, Z=8 m], Tx=[X=2
m, Y=3 m, Z=5 m], Rx=[X=4 m, Y=4 m, Z=6 m], frequency of 300 GHz,
σ = 0.088mm, Tcorr = 2.3mm, n = 1.97, α = 7.3cm−1, fixed for all faces, and
humidity of RH = 70%.
Figure 5.18 (a-f) shows the delay profile of each face separately. For 3ach

Figure 5.17. Delay profile of the attenuated received rays from all 6 considered faces.
Each face is depicted in a different color. The rays arrive in 6 groups (6 × 121 rays)
regarding each face. The first incoming ray from each face is related to the shortest
path, the specular direction. The size of the room is [X=8 m, Y=8 m, Z=8 m] position
of Tx=[X=2 m, Y=3 m, Z=6 m] and Rx=[X=4 m, Y=4 m, Z=6 m]. Concerning Tx and
Rx’s position, the incoming rays from face 2 arrive first and are followed by the rest of
incoming rays from other faces with the order of face 6, face 3, face 1, face 5, and face 4.

face incoming rays arrive close to each other with a minimal delay since the
distance between the tiles on each face is small. Moreover, based on the law of
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(a) (b)

(c) (d)

(e) (f)

Figure 5.18. Delay profile of the attenuated rays from face 1-6 (a-f). Rays arrive in 6
groups (6× 121 rays) in which rays from each face arrive in very short delays while there
is a gap between rays in each face. The shortest path is related to the specular reflection
in each face with the most strength in this scenario. Concerning Tx and Rx’s position,
the incoming rays from face 2 arrive first and are followed by the rest of incoming rays
from other faces with the order of face 6, face 3, face 1, face 5, and face 4.
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the reflection, the first incoming ray from each face is related to the shortest
path, that is, the specular direction. In our scenario, due to the surface’s
characteristic, the specular direction has the most of the reflected power, as
shown in Fig. 5.18 (a-f), where the first incoming ray in each face has the
least delay and most power. Figure 5.18 shows that the signal attenuation
highly dependent on the size of the room and the position of the Tx and Rx
since the material of the faces and the humidity of the room is fixed. For
instance, by changing the Rx position to the corner of the room, i.e., Rx=[7m
7m 7m], as shown in Fig. 5.19, the total received signal strength increases
as traveling distance reduces, i.e., the delay reduces. Note that the incoming
rays’ order is also changed in which the incoming rays from face 2 arrive first
and are followed by the rest of incoming rays from other faces with the order
of face 1, face 5, face 6, face 3, and face 4. It shows that the lower traveling
distance leads to higher signal strength at the receiver due to attenuation
caused by molecular absorption and free space (discussed in section 3.4.2).
However, in this scenario, since the material and geometrical characteristics
of the faces are the same, scattering attenuation has less influence on the
received signal than molecular absorption and free space attenuation. Figure

Figure 5.19. Delay profile of the attenuated received rays from all 6 considered faces. Each
face is depicted in a different color. The rays arrive in 6 groups regarding each face. The
first incoming ray from each face is related to the shortest path, the specular direction.
The room’s size and the position of Tx are the same as Fig. 5.17, but the position of
Rx=[X=7 m, Y=7 m, Z=7 m]. Moving Rx’s position from the center to the corner
leads to shorter traveling distance (smaller delay) and lower attenuation. The order of
incoming rays are also changed in which the incoming rays from face 2 arrive first and
are followed by the rest of incoming rays from other faces with the order of face 1, face
5, face 6, face 3, and face 4.

5.20 compares the two computed Rx position delays as a function of scatter
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points. It shows that, in this scenario, for the given Tx position moving Rx
from the center to the corner of the room increases the received signal strength.

Figure 5.20. A comparison between two different positions of Rx; Rx almost in the center
of the room, Rx=[X=4 m, Y=4 m, Z=6 m], the delays are larger while by moving Rx to
the corner of the room Rx=[X=7 m, Y=7 m, Z=7 m] smaller delays are witnessed.

5.5 Transfer function

Remind that not only the mean scattering power coefficient but also molecular
absorption and free space attenuation, i.e., path loss, are computed according to
the frequency of the incident ray. The total attenuation has a strong dependency
on frequency. Path loss peaks are produced because of the molecular absorption
effect, and the spectral windows between these peaks are examined, as shown
in Fig. 5.21. It is possible to identify three spectral windows between 0.001
THz and 1 THz, which are 0.001–0.54 THz, 0.57–0.74 THz, and 0.76–0.97 THz,
respectively. The relation between the path gain and the center frequency shows
that increased frequency leads to channel path gain drop. The relation between
distance and path gain is strong, especially for short distances, as shown in Fig.
5.21. For example, for a traveling distance of 6m, only the frequency bands
(0.06–0.54 THz) and (0.58–0.73 THz) have path loss values below 100 dB. I.e.,
longer traveling distances cause a reduction in the availability of spectrum for
communication. Since THz frequencies have strong frequency dependence and
high bandwidth, the frequency response cannot be assumed to be constant
within the entire bandwidth. If a wireless system bandwidth is considered
narrow enough, the frequency response depends of frequency can be disregarded.
To overcome this problem, one can use ray-tracing at different frequencies and
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Figure 5.21. Path gain for frequency range between 1 GHz and 1 THz, with respect to
the lab environment parameters, RH= 70 %, temperature T = 298.55 ◦K, air pressure
p = 1 atm and p0 = 1 atm, T0 = 273.15 ◦K for different traveling distances.

then combine results (see section 3.4.2). To do so, first, one needs to break the
bandwidth into many sub-bands, which are considered narrow enough to allow
us to assume flat frequency response [36]. For each sub-band, one uses the
ray-tracing approach to obtain the delay profiles considering each sub-band’s
center frequency. Note that each delay profile can be different even for the
same propagation direction due to the frequency dependency of the materials.
These delay profiles are then transformed into frequency responses (using FFT)
that can only be accurate around each sub-bands center frequency. These
accurate parts of each frequency response are extracted and then combined to
obtain a new frequency response. Finally, to get a delay profile that is accurate
over the entire THz band, the response is transformed into the time domain
[36].
The complete frequency response can be expressed mathematically as:

H(f) =
I∑
i=1
F{hi(τ)} ·Ri(f), (5.7)

where i is the sub-band index, and I is the total number of sub-bands, F{·}
is the Fourier transform, and hi(τ) is the CIR at the ith sub-band (center
frequency) that can compute by equation (3.14). Ri(f) is the rectangular
window function associated with the ith frequency. Hence, the channel impulse
responses (CIR) are generated at multiple center frequencies fi instead of
only at one frequency. Then, from each sub-band CIR, the channel transfer
functions (CTF) are computed and concatenated in the frequency domain to
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obtain the complete CTS, as shown in equation (5.7). Finally, the overall CIR
h(τ) can then be obtained through the inverse Fourier transform (IFFT) as:

h(τ) = F−1
{

I∑
i=1
F{hi(τ)} ·Ri(f)

}
. (5.8)

Figure 5.22 shows the CIR considering only the incoming rays from face 1 (see
Fig. 5.22a). The time axis is divided into small intervals called ’bins’. Each
bin is assumed to contain either one multipath component or no multipath
component. To be able to apply FFT, the delay values are rounded to 10−16s,
i.e., the step size is dt = 10−16s, as shown in Fig. 5.22b. Note that the
parameters used for the computation for the rest of this section are: the room
size of [X=8 m, Y=8 m, Z=8 m], Tx=[X=2 m, Y=3 m, Z=5 m], Rx=[X=4 m,
Y=4 m, Z=6 m], σ = 0.088mm, Tcorr = 2.3mm, humidity of RH = 70%, and
n and α are taken from [2] for different frequencies. Using this model, each

(a) (b)

Figure 5.22. a) The CIR of channel considering only incoming rays from face 1. b)
Dividing the time axis into the bins, each bin contains either one multipath component
or no multipath component. The center frequency is 300 GHz and σ = 0.088mm,
Tcorr = 2.3mm. The size of the room is assumed to be [8m 8m 8m] with Tx and Rx
located at Tx=[2m 3m 5m] and Rx=[4m 4m 6m]. The sampling step is 10−16s.

impulse response can be described by a sequence of “0”s and “1”s. To each “1,”
an amplitude regarding |h(τ)|2 is associated (see Fig. 5.22b). In the next step,
the FFT of the h(τ) at the given frequency is computed and is multiplied by
the bandpass filter Rf (f) with a bandwidth of 1 GHz. Figure 5.23a shows a
digital bandpass filter at 300 GHz. The applied equiripple bandpass filter has
a first stopband frequency 299 GHz, a first passband frequency 299.5 GHz, a
second passband frequency 300.5 GHz, a second stopband frequency 301 GHz,
and first and second stopband attenuation of 0.001. Figure 5.23b show this
filter in more detail. It shows that only the frequencies between 299.5 GHz
and 300.5 GHz remain almost constant, and the rest of the frequencies are
attenuated. Figure 5.24a shows the convolution results between the bandpass
filter and the input CIR in the time domain. One expects only the magnitude
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(a) (b)

Figure 5.23. A digital equiripple bandpass filter at 300 GHz with a passband of 1 GHz. a)
Shows the filter for all frequencies while in (b) only the frequencies around the center
frequency of 300 GHz is shown. The filter keeps the frequencies between 299.5 GHz and
300.5 GHz almost constant, and the rest of the frequencies are attenuated. However,
there is a transition part between 299 GHz to 299.5 GHz and 300.5 GHz and 301 GHz,
which depends on the utilized filter type. The filter has a first stopband frequency 299
GHz, a first passband frequency 299.5 GHz, a second passband frequency 300.5 GHz,
a second stopband frequency 301 GHz, and first and second stopband attenuation of
0.001.

at the frequency band extracted in the considered frequency domain, as shown
in Fig. 5.24b. In order to show better the filtering operation, Fig. 5.24c shows
the passband frequencies around the considered center frequency. It shows that
there is a small transition part from 299 to 299.5 GHz and from 300.5 GHz to
301 GHz that varies based on the type and order of the utilized filter. Note that,
considering the frequency band of 1 GHz around the center frequency of 300
GHz, i.e., from 299.5 GHz to 300.5 GHz, concatenating other center frequencies
could lead to having interference at the border of each frequency. However,
an ideal rectangular filter is applied in Fig. 5.25a. The cutoff frequencies are
exactly 299.5 GHz and 300.5 GHz, and the bandpass filtered time series and
the magnitude response of the filtered time series are shown in Fig. 5.25b and
Fig. 5.25c, respectively. Doing previous steps for different center frequencies
and concatenating all the frequency responses lead to full frequency response.
Finally, taking the IFFT of the full frequency response returns the CIR of the
channel.
A different approach is to simulate the channel in the frequency domain. This
is done by applying ray tracing for Ii different frequencies with equal frequency
spacing of Bandwidth/Ii over the bandwidth of the interest. The total CTF can
br computed by equation (3.22), and the CIR of the channel can be calculated
by IFT of Htot(f, d) as equation (3.23). Note that in equation (3.22), a linear
phase component is determined by the time shift and the frequency, i.e., the
phase component is set by exp(−j2πfτ). Figure 5.26 shows the CTF computed
by equation (3.23).
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(a) (b)

(c)

Figure 5.24. a) The convolution results between the bandpass filter and the input CIR in
the time domain. b) The magnitude response in the frequency domain. As is expected,
only the frequencies around 300 GHz are extracted by applying the filter. c) The
magnitude response around the center frequency of 300 GHz is shown. Since the applied
filter is not an ideal filter, the cut of frequencies are not 299.5 GHz and 300.5 GHz but
299 GHz and 301 GHz.

5.6 RMS Delay Spread and Coherence Bandwidth

The parameters that describe the multipath channel are the mean excess delay,
rms delay spread, and excess delay spread that can be computed from the
power delay profile. The time dispersion properties of wideband multipath
channels are most commonly quantified by their mean excess delay τ̄ , and rms
delay spread oi in the ith sub-band. The mean excess delay is the first moment
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(a)

(b) (c)

Figure 5.25. a) The magnitude response of an ideal bandpass filter around the center
frequency of 300 GHz with the bandpass of 1 GHz. The cutoff frequencies are exactly
299.5 GHz and 300.5 GHz. The bandpass filtered time series, i.e., the convolution results
between the ideal bandpass filter and the input CIR is shown in (b), and c) shows its
magnitude response.

of the power delay profile and is defined as [49, 50, 51]:

τ̄ =
∑
p a

2
i,pτp∑

p a
2
i,p

. (5.9)

The rms delay spread is the square root of the second moments of the instan-
taneous power delay profile and is:

oi =
√
τ̄ 2 − (τ̄)2, (5.10)

where
τ̄ 2 =

∑
p a

2
i,pτ

2
p∑

p a
2
i,p

. (5.11)
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Figure 5.26. CTF of the channel computed by equation (3.22). The utilized parameters
are: the room size of [X=8 m, Y=8 m, Z=8 m], Tx=[X=2 m, Y=3 m, Z=5 m], Rx=[X=4
m, Y=4 m, Z=6 m], σ = 0.088 mm, Tcorr = 2.3 mm, humidity of RH = 70%, n and α
are taken from [2] for different frequencies and are the same for all faces.

where ai,p in the amplitude of the pth path in the ith sub-band as given in
equation (3.14). Note that the maximum excess delay can be computed as
τx − τ0, where τ0 and τx are the first signal arrival at Rx and the maximum
excess delay, respectively. τx is the difference between the first and the last
received multipath components. τx is also called excess delay spread of a power
delay profile.
Considering only specular reflection of each face at the frequency of 300 GHz
and the room size of [X=8 m, Y=8 m, Z=8 m], Tx=[X=2 m, Y=3 m, Z=5
m], Rx=[X=4 m, Y=4 m, Z=6 m], σ = 0.088 mm, Tcorr = 2.3 mm, n = 1.97,
α = 7.3 cm−1, fixed for all faces, and humidity of RH = 70%. Table 5.1
shows the simulation results of only specular reflection in which includes the
delay and path gain. The rms delay spread is calculated as 6.16 ns for this

Table 5.1. The arrival of the specularly reflected rays at 300 GHz

Arrival path Path gain [dB] Delay [ns]
Specular reflection, face 1 −116.2457 22.7471
Specular reflection, face 2 −110.5426 10.0925
Specular reflection, face 3 −113.8627 16.3299
Specular reflection, face 4 −118.1072 29.2516
Specular reflection, face 5 −117.3717 25.5001
Specular reflection, face 6 −112.7164 12.3831

scenario. Note that through the Fourier transform, the power delay profile and
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the magnitude of frequency response (the spectral response) of a mobile radio
channel are related. Therefore one can obtain an equivalent description of the
channel in the frequency domain using its frequency response characteristics.
Coherence bandwidth is used, similar to the delay spread parameters in the
time domain, to describe the channel in the frequency domain. Although their
exact relationship is a function of the particular multipath structure, the rms
delay spread and coherence bandwidth are inversely proportional to each other.
Coherence bandwidth is a statistical measure of the range of frequencies over
which the channel can be considered flat, i.e.; it is the range of frequencies
over which two frequency components have a strong amplitude correlation.
Suppose the coherence bandwidth is defined as the bandwidth over which

Figure 5.27. Coherence bandwidth as a function of frequency. Increasing frequency leads
to a reduction in the multipath effect because of the high attenuation for the NLOS
paths. Hence, a smaller rms delay spread is btained, i.e., larger coherence bandwidth.

the frequency correlation function is above 0.9. In that case, the coherence
bandwidth is approximately Bc = 1/50oi, or if the definition is relaxed so that
the frequency correlation function is above 0.5, then the coherence bandwidth
is approximately Bc = 1/5oi [51]. Hence, the coherence bandwidth, defined
as the range of frequencies over which channel correlation exceeds 50%, is
given by 1/5oi = 32.462 MHz. Note that in the case of considering all the
scattered incoming rays from all faces, the value of coherence bandwidth is
the same, i.e., 0.2/oi = 32.462 MHz. While the calculated rms delay spread
considering only the scattered incoming rays from face 1 is about 4.986 ns, and
hence the coherence bandwidth is 40.10 GHz. Note that increasing frequency
would reduce in the multipath effect due to the very high loss for the NLoS
paths. This results in a smaller rms delay spread and hence, larger coherence
bandwidth, as shown in Fig. 5.27.
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Chapter 6

Conclusion and future works

This thesis focused on developing a multi-ray channel model in the THz Band
by using ray-tracing techniques. The entire work comprises the following parts:
(1) we discussed wireless propagation characteristics and the LOS path loss in
the THz Band. The results show that THz communication strongly depends
on the molecular composition of the medium and the transmission distance.
The main factor affecting the behavior of the THz Band is the absorption by
water vapor molecules, which attenuates the transmitted signal (discussed in
chapter 3). (2) A complete analysis of diffuse scattering from surfaces has been
conducted. First, the definition of the roughness of a surface and its frequency
dependence is discussed; subsequently, some theories, especially Kirchhoff’s
theory, are explained in state of art, including articles and studies already
presented in the literature. Starting from this knowledge, we tried to find out
how the surface roughness influences the overall received power. A ray-tracing
simulator has been developed to analyze the scattering phenomenon and do
accurate simulations of real handmade structures, i.e., different kinds of rough
surfaces. We also proposed an RT-based method that computes the scattering
field in Rx direction from the random rough surfaces (RRS) by considering only
the specular reflection coefficient using Fresnel theory (discussed in chapter 5).
Hence, we focused on realizing and generating RRS and how to use them in
the simulator to get the required results (see chapter 3). Simulation results
showed that in the case of rough surfaces, one faces diffuse scattering rather
than specular reflection. Its dependence on the surface statistical parameter
(standard deviation of height and correlation length) has also been observed as
a function of frequency, showing a good agreement from what is expected. It is
also shown that in the case of indoor propagation, the frequency dependence is
strictly related to the room’s internal geometry and the position of Tx and Rx.
Moreover, the study of the received power led to the conclusion that not only
the molecular composition of the medium and the transmission distance but
also surface roughness affects the power loss at THz band proportionally to the
degree of roughness. Results show how roughness affects the diffuse scattering
and its different behavior as a function of frequency. (3) We analyzed the
existing diffuse scattering models and realized that the method used to generate



82 6. Conclusion and future works

scattering tiles on building surfaces directly influenced the number and energy
of scattering components involved in the final calculation. Scattering tiles were
generated on each surface and parameters such as the PDP, angles of incidence,
reflection, and deviation of diffuse scattering components were analyzed as the
metrics for the performance assessments.
(4) we proposed a multi-ray channel that incorporates the propagation models
for the LOS, reflected, and scattered paths for the THz band. Based on the de-
veloped propagation model, we presented an analysis of the THz Band channel
characteristics. It is shown that the spectral windows defined by the molecular
absorption loss are distance-varying. Moreover, as the distance increases, the
width of these spectral windows reduces. We also show that the rms delay
spread is dependent on the distances and frequencies, and consequently, for
longer distances and lower frequencies, the coherence bandwidth decreases.
Regarding this work, the proposed multi-ray channel model can be used as a
foundation to design an efficient communication system in THz frequencies.
Our results will permit us to better focus the efforts for future works such as
Tx and Rx’s efficient positioning. This work can also improve to investigate a
new MIMO system model for THz communications that include the effects of
rough reflection surfaces.
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Appendix A

Ray tracer functions

In this thesis, the proposed ray-tracer is implemented in MATLAB. The code
includes several functions that are tried to describe in this section. The main
tasks of the ray tracer are:

• Compute the environmental condition such as Tx and Rx’s position, room
size, and the reflection coefficient of surfaces. Figure A.1a and A.1b show
the environmental condition for two different settings where the tiles and
the paths related to the specular reflection from each face is drawn. Note
that it is possible to add extra faces inside the room, but an empty room
has been considered here in our assumption.

(a) (b)

Figure A.1. The RT find specular reflection and the tiles for two different room sizes and
two different TX and Rx positions. a) Room size is [X=6 Y=6 Z=4] with the Tx=[X=2
Y=3 Z=1] and Rx=[X=2 Y=4 Z=3] position. b) Room size is [X=8 Y=8 Z=8] with the
Tx=[X=2 Y=3 Z=5] and Rx=[X=4 Y=4 Z=6] position.

• Find specular reflection points for all the room faces and then scatter
points around each one and their paths from Tx to Rx (small squares
around specular points in Fig. A.1a and A.1b are related to the scatter
points).
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• Compute total attenuation caused by molecular absorption, free-space
propagation, scattering (based on Kirchhoff theory).

• Compute geometrical parameters such as the angle of incidence, angle
of reflection, deviation angle, delay with respect to firstly, LOS time,
and secondly with respect to the shorts traveling time among all of the
incoming rays and so forth.

• Compute Phase shift related to each point on each wall.

• Plot the results.

A.1 Ray tracer functions descriptions

The proposed ray tracer’s main goal is to determine the possible rays prop-
agating between Tx and Rx, including LOS and NLOS propagation in a 3D
space. Therefore, it is necessary to evaluate all the possible angles of launching
rays from Tx and the angles of arriving rays at Rx.
The proposed ray tracer has been divided into several functions. The main
contribution of the proposed ray tracer functions is explained as follows:

A.1.1 Main.m

This is the main function of the code. This function calls all the other necessary
functions for this project. The constants such as the size of the room, [X Y
Z], speed of light, frequency, the position of Tx and Rx, correlation length of
the surface Tcorr, and the like are defined. Note that the room is considered
empty. The input parameters that need to be defined are listed in the table
A.1.

Table A.1. List of variables

Variable name Description
c = 3× 108 Speed of light

frequency = 300 GHz considered frequency
X=Y=Z= 8 size of the room =[X Y Z] (m)

pos_emitter = [2 3 5] Tx position (m)
pos_receptor = [4 4 6] Rx position (m)

Tcorr = 2.3 mm correlation length
sigma = 0.088 mm standard deviation of the height of the surface

sizeOfScatPtMatrix = 5 number of tiles around each specular point
pol = ’-’ or ’+’ define horizontal or vertical polarization, respectively

n refractive index of the surface
eps permittivity of the surface
mu permeability of the surface
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A.1.2 point_Reflection.m

Regarding the given size of the room and the given position of the transmitter
(Tx) and receiver (Rx), this function finds the specular point’s position on
each face. The way of calling this function is [pt1, pt2, pt3, pt4, pt5, pt6] =
point_Reflection(room, pos_emitter, pos_receptor); where pt1 to pt6 are the
coordinates of the specular points on each face. To find these points, other
functions such as compute_points.m, EqPlan3Pts_Vector.m, EqPlan3Pts.m,
PlanLineIntersect.m, and EIntersectPlanes.m need to call in order to firstly
find the corner points of the room and then the mathematical plane equation
of all the faces of the room.

A.1.3 compute_points.m

This function aims to find 8 different corner points of the room and find the
relative plane functions (or coefficient [a b c d]) of each plane. Note that the
room is built based on the multiplication of each vector of a unit cube to the
room’s size given as an input.
This function is defined as [cube_points, cube_faceVect, eqFaces] = com-
pute_points([0 0 0], room(1), room(2), room(3)) where [0 0 0] is the first point.
cube_faceVect and cube_faceEq are outputs of the EqPlan3Pts_Vector.m and
EqPlan3Pts.m functions.

A.1.4 EqPlan3Pts_Vector.m

This function finds the plane equation coefficient based on three points. It
can be called as M = EqPlan3Pts_Vector(A, B, C) where A, B, and C are
the coordinates of three points. The output is M = [a b c t] that are the
coefficients of the plane equation passing through three points given as input,
ax + by + cz + t = 0.

A.1.5 EqPlan3Pts.m

This function return the plane equation as a symbolic function based on three
given points (ax + by + cz + t = 0 ). It can be called as planefunction =
EqPlan3Pts(p0, p1, p2) where p0, p1, p2 are the coordinates of three points.

A.1.6 PlanLineIntersect.m

It can be defined as [eqLine, pt]= PlanLineIntersect(p1, p2, eqPlan) where
p1 and p2 are two given points and eqPlan is the equation of a plan. This
function returns the equation of the line passing from two points eqLine, and
the point of intersection pt, between the line and the given surface.
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A.1.7 EIntersectPlanes.m

This function is useful to exclude the fact that the reflection point cannot be
in an intersection of faces. It can be defined as bool = EIntersectPlanes(plan1,
plan2, point) where take 2 planes and one point as input and return 1 if the
point is in the intersection of the two plans.

A.1.8 scatter_points.m

The goal of this function is to return the center position of all the tiles around
each specular point, which are located at the distance of multiplications of
correlation distance, Tcorr, from the specular point. This function is called as
scatPtx = scatter_points(ptx, room, lx, sizeOfScatPtMatrix). The number of
tiles has been given as an input sizeOfScatPtMatrix. ptx is the specular point
of face x. Note that tiles are assumed to be square, and this function takes lx
as the side length of a tile as an input. The output of this function is a matrix
of scatter points (scatPtx) around the specular point of the face x. Two main
function such as compute_points.m and PinPlan.m has been called inside this
function.

A.1.9 PinPlan.m

This function checks if the input of the scatter_points.m function is related
to which wall and has the form of bool = PinPlan(planeq, P) where planeq is
the equation of the plan and P is the point. It returns 1 if P is in the plan;
otherwise, return 0.

A.1.10 scatter_angles.m

Three different angles of incident, reflection and deviation related to each of
the scatter points including specular ones has been computed through this
function. This function has the form of [theta1_R11, theta2_R11, theta31] =
scatter_angles(pt1, pos_emitter, pos_receptor, room, lx, sizeOfScatPtMatrix).
The output of this function is theta1_R1x that is a column matrix containing
the incident angle between the ray coming from transmitter and face X,
theta2_R1x is a column matrix containing the reflecting angle between the ray
reflecting from the relevant scatter point on face X and Rx and theta3x is a
column matrix of deviation angles from specular reflection of each tile.

A.1.11 Func_of_ppinf.m

This function aims to implement the value of mean scattered power for the infi-
nite conductive surface of each wall for each point based on Kirchhoff theory. It
returns the values in dB and the value of g, which is the surface’s roughness fac-
tor. The function has the form of [ppinf1, ppinfdb1, g1]=Func_of_ppinf(Tcorr,
theta1_R11, theta2_R11, theta31, lx, ly, sigma, lambda). This function return
< ρρ∗ >∞ named as ’ppinfx’, ’ppinfdbx’ for infinite conductive surface where
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x refers to face X for each tile as linear or dB besides the value of g for each
tile of different faces.

A.1.12 Func_of_ppfinite.m

The function returns the value of mean scattered power for the finite conductive
surface of each wall for each point based on Kirchhoff theory. This function calls
Func_of_ppinf.m and FresnelCoeff.m to do the required calculations. It has the
form of [ppfinite, ppfinitedb, g, ppinf, R, RRconjug ]=Func_of_ppfinite(Tcorr,
theta1, theta2, theta3, lx, ly, sigma, lambda, mu, eps, pol, n) where the outputs
of the function are mean scattering coefficient for the finite conductive surface
in linear and dB ppfinite and ppfinitedb, the roughness parameter g, mean
scattering coefficient for infinite conductive surface ppinf, and Fresnel reflection
coefficient R and its conjugate RRconjug.

A.1.13 FresnelCoeff.m

It has the form of [R, RRconj]= FresnelCoeff(theta1, mu, alpha, lambda, eps,
pol, n) where it is able to find the Fresnel reflection coefficient for both vertical
and horizontal polarization.

A.1.14 PowerRx.m

It has the form of [power, powerdb] = PowerRx (theta1, A, pos_receptor,
scatPt, lambda, ppfinite) and calculate the mean power reflection coefficient
of a surface area A at the receiver position. The outputs of this function are
power_rec_db and power_rec_db that is the same as power_rec converted in
dB.

A.1.15 Path_Loss.m

This function computes the propagation path loss that is the sum of free space
and molecular absorption path loss in dB related to each path. It has the
form of [Ploss, PLoss_dB, Ploss_LOS] = Path_Loss(scatPt, pos_receptor,
pos_emitter, k, lambda) where k(f) is Molecular absorption coefficient at the
given frequency. Ploss and PLoss_dB are path loss regarding the NLOS
path in linear and dB, respectively and Ploss_LOS is path loss of LOS path.
Note that total attenuation by considering the contribution of the scattering
attenuation is saved in totalAttenuation variable.

A.1.16 Delay.m

This function returns a matrix of the delay related to all the points, including
the specular and the scatter points of each face of the room. It has the form of
[Delay_vec]= delay (pos_emitter, pos_receptor, room, lx, sizeOfScatPtMatrix,
boolNLOS, c) where the delay is computed with respect to 1) the shortest
time among the different propagation time of the 6 rays suffering a specular
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reflection and 2) with respect to the time of LOS time. If boolNLOS is equal
to one, the delay is computed with respect to the shortest time among the
different; otherwise, it returns the delay matrix with respect to the LOS path.
The output of this function is a matrix of delays Delay_vec, related to all the
paths.

A.1.17 Distance.m

It has the form of [DistVector] = Distance(PointVector, pt) where this func-
tion finds the distance DistVector, between the points of an input vector,
PointVector, and a destination point pt for each point separately.
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