Performance Analysis of Impulse-Radio UWB Networks impaired by Multiple Access Interference

Mauro Biagi, Cristian Pelizzoni, Nicola Cordeschi, Enzo Baccarelli

INFO-COM Department - University of Rome "La Sapienza" {biagi, pelcris, cordeschi, enzobac}@infocom.uniroma1.it

1 – Problem Addressed

✓ The Presence of more than one pair of transmit-receive nodes induces Multi-User Interference.

✓ The system is assumed to be decentralized and asynchronous. The only synchronism is between

reference transmitter and reference receiver.

✓ The Collision Probability is evaluated and employed to evaluate the behavior of links by considering different parameters such as the number of nodes, distances, rates, etc.

3 – Collision Probability (2/3)

✓ Uniform distribution of users in the network implies uniform propagation delay

$$p(\tau_{pj}) = \begin{cases} \frac{c}{d_{\max}} & 0 \le \tau_{pj} \le \frac{d_{\max}}{c} \\ 0 & otherwise \end{cases}$$

✓ Probability of pulse emission is modeled subject the constraint that a pulse is emitted within a frame interval

$$p(T_{ej}) = \frac{\sum_{m=-M}^{0} rect_{(N+1)T_h} (T_{ej} - m((N+1)T_h))}{(N+1)T_h (M+1)}$$

✓ Pulses are assumed to be equally distributed

$$p(\Delta) = \frac{1}{2} \sum_{\Delta=0}^{1} \delta(\Delta)$$

Collision Probability is given by

$$P_C = 1 - \prod_{j=1}^{N} \left(1 - P_C^{(j)} \right)$$

2 – Collision Probability (1/3) ✓ A collision occurs when a signal form interferer falls in the receive time window

We can protect information by CODING!

Processing and Centralized Controller.

4 – Collision Probability (3/3)

$$P_C^{(j)} = \int_{-T_s}^{T_h} p(z_j) dz_j$$

$$p(z_{j}) = \frac{c}{2d_{\max}(N+1)T_{h}(M+1)} \sum_{m=-M}^{0} \left[S\left(z_{j} - m(N+1)T_{h} - \frac{2d_{\max}}{c}\right) + S\left(z_{j} - m(N+1)T_{h} - \frac{2d_{\max}}{c} - \Delta\right) \right]$$

$$S(z_j) = rect_{(N+1)T_h}(z_j) * rect_{\underline{d_{\max}}}(z_j)$$

$$M = \left\lceil \frac{d_{\max}}{c} \operatorname{mod}(N+1) T_h \right\rceil$$

5 – Performance Evaluation

 \checkmark The average error probability is driven by collisions. $P_E = (1 - P_C)P_e + P_C P_e^{(C)}$

6 – Performance (Error Protection)

100%

2E-8

7 - Performance (error protection)

✓ The number of packet retransmission could be very high and this counterbalances the gain achieved by ARQ with respect to FEC

8 -Performance in sensor nets

	Users in the network					
		N=15	N=20	N=25	N=30	
	10%	1E-8	6E-6	8E-6	9E-6	
Activity percentage	20%	1.2E-8	8.2E-6	1.1E-5	1.4E-5	
	30%	1.3E-8	1E-5	2E-5	2.2E-5	
	40%	1.4E-8	1.42E-5	2.62E-5	2.7E-5	5mt ARQ Scheme
	50%	1.5E-8	1.6E-5	2.81E-5	3.1E-5	
	60%	1.6E-8	1.75E-5	3.27E-5	3.4E-5	
	70%	1.7E-8	1.9E-5	3.8E-5	4.2E-5	BER
	80%	1.8E-8	2.15E-5	4.1E-5	4.7E-5	
	90%	1.9E-8	2.3E-5	4.3E-5	5.2E-5	

2.5E-5

4.5E-5

6E-5