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Abstract—This work addresses the problem of cooperative
spectrum sensing in cognitive radio networks, focusing on the
impact of mobility on performance of cooperative sensing. First,
a review of the most recent results on cooperative spectrum
sensing is provided, resulting in the identification of measurement
correlation and frame error rate in the reporting channel as
the main parameters influencing the performance of cooperative
sensing schemes. Next, the paper discusses the extension of the
analysis to the case of mobile sensors, and determines the set of
assumptions made in existing literature when taking into account
mobility in sensing. The paper moves then to remove some of
such assumptions, by presenting simulation results obtained in
presence of realistic models for propagation in the considered
area, as well as of a realistic mobility model. A comparison
between theoretical derivation and simulation results shows that
correlation among measurements taken by different sensors and
the selected mobility model may significantly affect the sensing
performance.

I. INTRODUCTION

Spectrum sensing is a key means of radio environment
information acquisition for cognitive radio purposes. It does,
however, present a number of challenges affecting its viability
in opportunistic secondary spectrum usage scenarios. First, it
struggles to achieve the required sensitivity in detecting the
presence of a primary signal without being configured in such
a way that the probability of falsely detecting such a signal is
excessively high [1]. Moreover, spectrum sensing is affected
by localized shadowing and fading characteristics, meaning
that in reality, complex networks of spectrum sensors placed in
different locations are required to reliably detect the presence
of the signal [2]. This presents a number of questions, includ-
ing: How many such sensors are required, in which locations?
How do they communicate with the decision making entity?
How do you select which sets of information from sensors to
use (or which redundant information to neglect)? How do you

handle security issues, such as sensors maliciously reporting
false information? Such challenges and unknowns have been
a large influencing factor in regulatory decisions to remove
spectrum sensing as a requirement in the TV white space arena
[3], [4]. Nevertheless, regulators are keen to bring concepts
such as spectrum sensing back into the fold as soon as they
are proven viable and not likely to significantly adversely
affect the market potential for pioneering technologies [5].
Spectrum sensing performance particularly in terms of cooper-
ative/collaborative sensing can be improved. Taking advantage
of mobility of spectrum sensors is a largely under-investigated
means of improvement in performance for sensing. Through
mobility, samples may be taken at a range of locations, which
in the case of fixed sensors being deployed would very quickly
lead to a very large number of sensors being required to
achieve a similar performance. Mobile devices with spectrum
sensing capabilities embedded can effectively test the spectrum
in various locations as the user moves, without the users
knowledge, with one sensor therefore being able to act as
if it were many tens of even hundreds of stationary sensors.
Moreover, in many cases such as TV white space, such is the
slowly changing nature of spectrum usage that a single sensor
might effectively cover a very large number of locations before
it becomes necessary to update the spectrum usage information
it has reported.
Moving from the above observations, in this work recent
developments in cooperative spectrum sensing and sensing in
presence of device mobility are reviewed, and open issues are
identified. The work moves then to define a set of scenarios
foreseeing multiple sensing devices in presence of mobility,
and analyzes sensing performance in such scenarios, in order
to compare with results from pre-existing literature.
The paper is organized as follows: Section II analyzes re-



cent works focusing on performance of cooperative sensing
schemes; Section III focuses on previous work on sensing in
presence of mobility, and identifies the assumptions adopted
in deriving performance bounds. Section IV introduces then
scenarios foreseeing sensing in presence of mobility that
remove some of the above assumptions, and Section V an-
alyzes performance of sensing in presence of mobility in such
scenarios. Finally, Section VI draws conclusions.

II. COOPERATIVE SENSING IN FIXED WIRELESS
NETWORKS

Solutions for cooperative spectrum sensing in networks of
terminals in fixed positions have been widely investigated in
the past [2], [6], [7], [8], [9]. In this section the relation
between communications and sensing performance in such
scenario will be discussed. Firstly, transmission delays and la-
tency of the network increase the sensing and processing time
and reduce the agility of the system; secondly, transmission
errors also have a direct impact on the detection performance
by impacting detection and false-alarm probabilities as shown
in the following by adopting a simple network model where
the reliability of communication is characterised by the frame-
error probability (see [10] for additional details; similar results
can be found in [11]).
The model foresees a set of NS terminals connected to a
fusion centre through packet-loss channels. The k-th terminal
is characterized by its false-alarm and detection probabilities
P

(k)
fa and P

(k)
d , respectively, and the communication channel

between the k-th sensor and the fusion centre is described by
a packet-loss channel with frame-error probability P

(k)
e . The

network state is described by a vector of random variables
E = [E1, · · · , En], with elements Ek ∈ {0, 1}. The random
variables Ek indicate whether the k-th channel is in error or
not, and they are distributed as follows: Pr (Ek = 1) = P

(k)
e

and Pr (Ek = 0) = 1 − P
(k)
e . The fusion centre is charac-

terized by its false-alarm and detection probabilities Pfa (E)
and Pd (E), which are now conditioned on the network-state
vector E. The network-state vector indicates in this case which
packets are available to the fusion centre for decision making.
Based on the model introduced above, general expressions for
the average false-alarm and detection probabilities P fa and
P d can be derived as the expected value of the probabilities
Pfa (E) and Pd (E), averaged over all network-state vectors
E:

P fa = EE {Pfa (E)} =

=
∑

s1,··· ,sNS

Pfa (E = [e1, · · · , eNs
])

NS∏
k=1

Pr (Ek = ek)

(1)

and

P d = EE {Pd (E)} =

=
∑

s1,··· ,sNS

Pd (E = [e1, · · · , eNS
])

NS∏
k=1

Pr (Ek = ek) .

(2)

In order to better illustrate the effect of packet losses
in the network on the sensing performance, let us focus
on the special case where all channels experience the same
frame error probability P 1

e = P 1
e = · · · = PNs

e = Pe.
It is furthermore assumed that the fusion centre chooses a
conservative decision rule such that whenever no sensing
information is available (i.e., E = 1), the fusion centre decides
that the sensed spectrum is occupied. It follows immediately
that Pfa (E) = 1 and Pd (E) = 1. Under these assumptions,
one gets the following lower bounds on the average false-alarm
and detection probabilities:

P fa = 1 · PNS
e +

∑
e 6=1

Pfa (E = e)

NS∏
k=1

Pr (Ek = ek) > PNS
e

(3)

and

P d = 1 · PNS
e +

∑
e 6=1

Pd (E = e)

NS∏
k=1

Pr (Ek = ek) > PNS
e .

(4)

The first bound on the average false-alarm probability pro-
vides interesting insights. The false-alarm probability can be
seen as a measure for the effectiveness of the sensing algorithm
and the decision making process. That is, the higher the false-
alarm probability, the more spectral holes are not detected and
the more opportunities are lost. Accordingly, it is typically
desired that the false-alarm probability stays below a certain
upper bound (see e.g. [12]). As the inequality above indicates,
this is only possible if PNS

e is below the given threshold. One
can then use the threshold for the highest acceptable false-
alarm probability to define a quality of service constraint for
the frame-error probability in the network as follows:

Pe <
NS

√
P

(Th)
fa . (5)

As we can see from this inequality, there exists a tradeoff
between the frame-error probability Pe in the network and
the number of sensors NS : to meet the false-alarm constraint,
one can either increase the reliability of communication on
the links while keeping the number of sensors constant, or
allow for a higher frame-error probability in the network and
compensate for it by increasing the number of sensors. That
is, reliability is increased through diversity.

It is interesting to note, however, that an increase in the
number of sensors is only beneficial to the performance of
cooperative spectrum sensing when the requirement on the



false alarm probability is not too close to the lower bound
defined as a function of the frame-error probability on the
reporting channels. In particular, in [13] it is shown that
the average false alarm probability defined above can be
approximated as:

Pfa > Pmin
fa = 1− (1− Pe)

Ns NsPe (6)

where, as defined above, Pe is the frame error probability
on the reporting channels and Ns is the number of sensors.
It is proven in [13] that an increase in Ns may lead to a
worse performance in terms of probability of missed detection
Pmd when the requirement on Pfa is set very close to the
lower bound Pmin . Such result highlights the key role of the
reporting channel on the performance of cooperative spectrum
sensing: in the case of a very noisy reporting channel (high
Pe ), the cognitive network would be forced to operate with
a high probability of false alarm in order to guarantee the
required probability of detection. Under such conditions even
increasing the number of sensors would not help in improving
performance. Achieving a low Pe is thus fundamental in order
to take full advantage of cooperation in spectrum sensing.
Several approaches can be followed in order to meet this goal:
• In [13] it is proposed to take advantage of transmit

diversity for the transmissions from sensors to the BS
by organizing them in pairs, that create a virtual antenna
by means of Space Time Block Coding.

• A subset of devices characterized by a good channel
towards the BS can be selected as reflectors of the local
sensing decisions, leading to a clustered network, as
suggested in [8], [9].

Actual performance of cooperative spectrum sensing is also
heavily affected by the presence of correlation between the
propagation channel from the primary user and different
sensors in the cognitive network. The work in [14] analyses
the impact of correlation between measurements and sensing
decisions on cooperative sensing performance: the authors
show that as the number of sensors increases, the correlation
between the measurements increases as well, reducing and
eventually nullifying the positive effect of introducing new
sensors in the sensing procedure. For a correlation index as
low as 0.2, the net effect of increasing the number of sensors
is indeed to reduce the sensing performance as a result of
an increased probability of missed detection, confirming that
efficient cooperative spectrum sensing requires in most cases
the selection of a subset of sensors on the basis of a set of
criteria aiming at the maximization of sensing performance.

III. SENSING IN MOBILE NETWORKS

The results presented in Section II were derived under the
assumption of having the sensing nodes in fixed positions. Sig-
nificantly lower efforts were devoted to the analysis of spec-
trum sensing in presence of mobility; furthermore, research
activities mainly focused on the role of mobility in the sensing
performance of a single device. In [15], authors analyze the
impact of mobility on sensing performance by determining the
potential gain achieved by combining multiple measurements

taken at different times by a single mobile device, showing that
the gain increases as the speed of the device increases, since
spatial diversity is proportional to the distance traveled by
the device between two measurements. Next, they analyze the
gain achievable by combining measurements taken by multiple
mobile devices, and propose a formula for determining the
sensing performance, expressed by the probability of missed
detection, as a function of the number of devices, the number
of measurements taken by each device, and the speed of a
device. The results presented in [15] are quite interesting, as
they highlight the presence of a trade-off between the number
of devices and the number of measurements taken by each
device; it should be noted however that such results are derived
under very strict hypotheses, that are seldom verified in real
world. In particular, the work assumes that: 1) all devices move
at the same speed; 2) correlation between measurements taken
by a device is only dependent on the speed absolute value,
and not on direction of movement; 3) measurements taken by
different devices are uncorrelated, irrespectively of their actual
positions. Furthermore, issues related to variable connectivity
induced by mobility were not taken into account at all in the
work. It can be expected that when more realistic assumptions
are made, in particular related to partial correlation between
measurements, performance could be significantly different, as
reported at the end of Section II.
Authors in [16] move from the work in [15], by correcting
some of the approximations introduced in it to obtain the
expression of the probability of missed detection, providing
thus a better estimation of the sensing performance as a
function of speed and number of measurements taken by
a single device. The work still relies however on some of
the hypotheses adopted in [15], in particular the hypothesis
of constant movement direction, so that performance only
depends on speed absolute value calling for additional efforts
for addressing the impact of mobility on sensing under realistic
scenarios. Such scenarios are identified in the next section, and
analyzed by simulation in Section V.

IV. SCENARIOS FOR SPECTRUM SENSING USING MOBILE
SENSORS

Numerous scenarios for secondary sensing using mobile
sensors can be envisioned. This paper concentrates on two
such scenarios: (i) an infrastructure-based network such as
IEEE 802.22 [17] opportunistically using licensed spectrum,
and (ii) a peer-to-peer communications scenario opportunisti-
cally using spectrum, which might not be licensed spectrum
due to the challenges involved or otherwise might require
express permission/allowance by the spectrum license owner.
Case (i) is relatively simple to envision as there will already be
a communication means existing between the mobile devices
operating in slave mode and the infrastructure. Moreover,
the presence of the infrastructure will lend well to the com-
putation of information by a powerful infrastructure-based
decision making taking advantage of information sent by a
large number of sensors. Case (ii) is a lot more challenging,
and in many situations will involve a far smaller number



Fig. 1. The considered scenario tree for mobility-based spectrum sensing.

of sensors and likely a lower allowed transmission power
in opportunistic accesses. Although we are not assuming the
presence of a database in this paper, cases (i) and (ii) might
respectively be seen as somewhat reflective of Mode 2 and
Mode 1 devices according to FCC terminology [3]. Another
key aspect of the investigated scenarios is the requirement
for reporting information on spectrum measurements and the
associated frequency of updates of the spectrum availability
picture by the central decision making entity. There are two
possibilities that can be assumed here: (i) a hard limit on
updating of spectrum picture, e.g., once every 24 hours for
example as is assumed at least for checking with a geolocation
database, and (ii) a best-effort service, where updates to the
spectrum availability picture are driven as and when mobile
devices are able to send information to the central entity.
For the purpose of this paper, it is assumed that for case
(i) the central decision making entity polls for sensing to
be done, or determines policies that are executed in mobile
devices specifying when sensing is done and results are sent.
Using such an approach, the central entity might plan ahead,
based on known/predicted mobilities of devices, for sensing
to be done at certain locations by the devices in order to
produce the best possible picture within the given 24-hour
sampling period. For case (ii), it is assumed that sensing is
automatically done by mobile devices and results sent to the
central decision making entity with either a given periodicity,
or based on another autonomously-determined trigger (e.g.,
the device noticing a significant change in power level on a
channel thereby knowing that the environment has changed,
triggering sensing to take that into account). Based on the
above arguments, Figure 1 depicts the scenario tree that is
considered in this paper. The analysis based on simulation
presented in the next Section focuses on the case of an ad-hoc
peer-to-peer network where sensing takes place periodically,
e.g. under the input of a centrally-driven trigger.

V. SIMULATION RESULTS

Simulations were carried out to evaluate the performance
of sensing algorithm when the measurements are obtained
through energy detection at different sensors moving through-
out a squared area of 10 km by 10 km. As the degree of
correlation among multiple measurements is one of the main
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Fig. 2. Values assigned to the propagation parameters (shadowing variance
and path loss exponent) within the simulation area.

factors determining the efficiency of cooperation among sen-
sors, simulations took into account the presence of both spatial
and temporal correlation among measurements, thus removing
one of the idealistic assumptions identified in Section III. In
order to take correlation into account, the simulation area was
subdivided in regions characterized by similar propagation
conditions, namely the path loss exponent and shadowing
attenuation as depicted in Figure 2. The values were selected
avoiding sharp variation between adjacent sections, which are
hence characterized by a non-null correlation factor.

The licensed user was kept at a fixed position in the center
of the area, and transmitted at the constant power of 30 mW,
whereas sensors moved according to the Random Waypoint
model [18], thus also removing the hypothesis on constant
speed and direction adopted in previous works.
Sensing was performed periodically over 200 seconds accord-
ing to two-phase scheme characterized by a sensing phase
of duration equal to 2s and an exchange phase of 1s; in the
proposed scheme each device takes samples during the sensing
phase with a rate of 10 samples/s, leading to a total number
of 200 samples per sensing phase.The device takes then its
individual sensing decision, and communicates the decision
to the other devices during the subsequent exchange phase.
Overall, a combined decision is taken every 3 seconds, leading
to 200/3 ≈ 66 combined decisions. During simulations each
device moved at a speed of 15 m/s, with a pause time between
two movement periods of 0.5 s.
Three fusion rules were considered, namely AND, OR, ma-
jority rules, according to which the primary transmitter is
considered present only if all sensors (AND), any sensor (OR),
or the majority deliver a positive report. Figure 3 shows the
variations of the probability to detect the primary transmission
as a function of the number of sensors involved in the detection
process for the three rules. As expected, the AND rule leads
by far to the worst probability of detection. However, this
is compensated by a lower probability of false alarm, which
comes usually along with a more efficient utilization of the
bandwidth. As an example, this could be the optimal option
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for coexisting ad-hoc networks. OR and majority rules present
a similar trend; although the probability of detection can be
maximized opting for a positive verdict if any sensor reported
it, there is again a trade-off to be paid in terms of an increase
of the false alarm rate.
The same simulations were also executed considering a fixed
sensor network and averaging over multiple runs the assigned
random positions: the results were comparable to those rep-
resented in Figure 3 in terms of mean value and variance of
the probability of detection except for a bigger variance in
the case of the AND rule. A possible explanation for this
outcome is that both the usage of multiple runs with random
positions for the fixed sensors and the adopted mobility model
tend to provide uniform measurements over the region. It
is left to a following study to assess if a set of sensors
moving according to predefined paths are able to improve
significantly the achievable performance. It is interesting to
note that assuming the same number of devices and sensing
decisions, as well as the same propagation characteristics and
primary transmission power, the theoretical expression for the
probability of missed detection proposed in [15], eq. (13),
leads to a probability of detection equal to 1 for 4 or more
sensors, highlighting the significant impact of the assumptions
identified in Section III on performance evaluation.

VI. CONCLUSION

This work analyzed the impact of mobility on the perfor-
mance of cooperative spectrum sensing schemes. The paper
first reviewed recent advances on performance evaluation of
cooperative sensing schemes in networks of sensors in fixed
position, and moved next to the case of mobile sensors,
analyzing the assumptions adopted in the few works dealing
with such case. The paper then compared the results obtained
in such works with those of simulations performed in more
realistic conditions, characterized by the presence of correla-
tion between measurements taken by different sensors, and of
a more realistic mobility model. The comparison highlights
how the assumptions made in the theoretical derivation of

performance bounds for cooperative sensing in presence of
mobility have a significant impact on the bounds themselves,
as shown by the gap between theory and simulation results
where such assumptions were partially removed.
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