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Abstract—This work investigates the impact of neighbour
discovery on distributed learning schemes applied on optimal
network selection based on the acquisition by the selecting
device of context information on the capabilities and status
of surrounding networks. The work introduces the problem of
neighbour discovery in multiple channel and cognitive networks,
and identifies the trade-offs between neighbour discovery per-
formance and overall network performance. Next, an optimal
network selection algorithm based on distributed learning is
introduced, and key parameters and components relevant to its
operation are presented, focusing in particular on the common
control channel required to exchange the context information.
Finally, the paper discusses the relation between neighbour
discovery and the distributed learning process at the basis of
the context information acquisition; a model for mapping the
learning process on a neighbour discovery problem is proposed,
and the potential impact of neighbour discovery failures on the
performance of the optimal network selection scheme is discussed.

I. INTRODUCTION

Neighbour discovery can be defined as the process of
acquiring information about the local environment, aiming at
determining the presence of other devices, the capabilities of
such devices, and the information available at them. Neighbour
discovery is instrumental in the setup and operation of a
wireless network since it forms the basis of key functions
like network association, network organization (e.g. clustering)
and support for both local (e.g. Medium Access Control) and
end-to-end algorithms and protocols (e.g. routing in multi-hop
networks).
In the general case of networks where multiple channels are
available, neighbour discovery can be defined as a two steps
process:

1) Allow devices to converge on the same channel;
2) Exchange the information required to achieve discovery

before one of the devices moves to a different channel.
The problem of neighbour discovery is particularly challenging
in the case of cognitive wireless networks, as the set of
channels may differ among devices due to different decisions
on the presence of other systems on some of the potentially
available channels. For this reason, neighbour discovery in the

context of cognitive radio networks has been investigated by
several groups of researchers, see for example [1], [2], [3],
[4].
Algorithms that rely on an accurate and fast neighbour discov-
ery include in particular distributed learning and knowledge
sharing.
This work will focus in particular on distributed learning
mechanisms applied to the problem of optimal selection by a
device in a set of candidate networks/configurations, in terms
of the QoS levels that can be achieved. In particular, for
the implementation of the learning mechanism, concepts from
Bayesian statistics will be considered to build knowledge on
the context of the device [5], [6], leading to the estimation
(based on the collection of measurements) of the conditional
probabilities for a certain network to achieve a certain QoS
level for a particular application. In this context, it is essential
to complement learning mechanisms with a reliable solution
for the exchange and distribution of information.
To this respect, Cognitive Control Channels (CCC) have
been identified as a key feature required for Cognitive Radio
Systems (CRS). In general, a CCC can be defined as a
channel for transmitting elements of information necessary
to manage and realize various operations within a CRS.
An open issue is however how to converge to a cognitive
pilot channel shared between the cognitive devices. In [7],
for example, the setup of a Local Cognitive Pilot Channel
(LCPC) is proposed, but the underlying difficulties of setting
up the LCPC when no predefined frequencies are reserved
to this aim are not discussed. In general, the set-up of a
common channel will foresee a neighbour discovery phase.
An accurate performance evaluation of distributed learning
algorithms requires thus to take into account the efficiency in
the establishment of a common communication channel, and
thus of the underlying neighbour discovery scheme, in order
to determine the impact of missed neighbour detections and
the corresponding incomplete local information.
In this framework, the goal of this work is to analyze the
impact of neighbour discovery, and in particular of discovery
failures, on algorithms for distributed learning, focusing on



the issue of reduced efficiency in setting up a common
communication channel.
The paper is organized as follows. Section II introduces the
solutions for distributed learning considered in this work, and
discusses the need for a common communications channel.
Section III presents key issues related to neighbour discovery
and reviews potential solutions proposed in the literature.
Section IV discusses the impact of the efficiency degree of
neighbour discovery in setting up a common communications
channel on the performance of the considered distributed
learning solution. Finally, Section V draws conclusions.

II. DISTRIBUTED LEARNING FOR OPTIMAL NETWORK
SELECTION

Considering an arbitrary user that carries a terminal and
has a subscription with a Network Operator (NO), distributed
learning mechanisms can provide the status of a device and
of its environment; this includes for example the available
networks belonging to or collaborating with the NO, their
Quality of Service (QoS) capabilities. Focusing on the QoS
level capabilities that can be obtained, and assuming the appli-
cation of Bayesian statistics concepts, the learning mechanism
collects measurements and updates the conditional probabil-
ities that a certain network can achieve a certain QoS level
for a particular application. The user can use a certain set of
applications, based on his/her subscription. The corresponding
context information for this user includes:

• A set of candidate networks. The set of candidate net-
works is a subset of the available networks. It comprises
networks that are compliant also with the policies of the
Network Operator, i.e. the selection of these networks for
the particular user and terminal is allowed.

• The set of QoS levels, for each network and application,
at which an application can be offered by a certain
network. This set of QoS levels comprises those that
are achievable in the particular context of operation
(e.g., radio channel conditions) and compliant with the
policies of the operator for each application. A QoS
level corresponds to a set of QoS parameters, such as bit
rate, delay, jitter, etc. It should be noted that the scheme
presented here is generic with respect to selected QoS
parameters. Each parameter can be associated with a set
of reference values for a specific network. For example,
for the bit rate parameter a set of reference values could
include the values 6, 12, 24, 36, 48, 54 Mbps. A QoS
parameter can take a value among this set of reference
values when a particular network is considered. In this
respect, the set of QoS levels that can be achieved in a
particular context can derive as the Cartesian product of
the various reference value sets for the QoS parameters.

• The conditional probabilities, which provide an estima-
tion of how probable it is that a specific QoS parameter,
will reach a certain value, for an application, given a
certain configuration.

• A probability density function value, which quantifies
the knowledge regarding context. The probability density

function offers a more aggregate estimation regarding
the probability to achieve a certain combination of QoS
parameters, which corresponds to a QoS level, for an
application, given a certain network. This expresses the
probability that a certain network will support a specific
application and QoS level combination. In other words,
the values of the density function express the knowledge
on how probable a particular network-application-QoS
level triplet is, compared to all other possible triplets.

The update of the conditional probabilities and probability
density function values constitutes the learning process. The
update of these relies on approaches suggested in [8], [9], [10],
[11]. It should be noted that the update of context information
and knowledge is continuous, while the device is on the move.
As a device moves there is usually some degree of overlap
between its previous context and its current context. Thus,
when the device moves into a new area, the context learning
process does not have to start from the beginning. Previously
obtained applicable information and knowledge, in the form of
conditional probabilities and the probability density function,
may still be exploited.

A. Cognitive Control Channels

As already noted, solutions for distributed learning rely on
the capability of exchanging information on a Cognitive Con-
trol Channel, where information may be conveyed from net-
work infrastructure elements to user equipment. Furthermore,
the CCC may be exploited for the exchange of information
between terminals, so as to increase the accuracy of obtained
knowledge on the context of the environment.
The role of such a CCC, known as Cognitive Pilot Channel
(CPC) has been studied for the specific context of heteroge-
neous CRS [12]. The CPC is defined as a channel (logical or
physical) which conveys the elements of necessary information
facilitating the operations of Cognitive Radio Systems and
can be seen as an enabler for providing information from
the network to the terminals, e.g., frequency bands, avail-
able RATs, and spectrum information and spectrum usage
policies. These results have been provided as inputs to the
International Telecommunication Union, Radio communica-
tion Sector (ITU-R) within the matter of addressing regulatory
measures to enable the introduction of software-defined radio
(SDR) and CRS. The concept of the CPC has then been further
extended to also include the concept of exchange of cognitive
data among user devices. These studies were exploited as
inputs to standardization: the IEEE Dynamic Spectrum Access
Networks (DYSPAN) Standards Committee (formerly IEEE
Standards Coordinating Committee 41 (SCC41)) published
the IEEE 1900.4 standard [13], [14] in 2009 related to the
efficient operation of heterogeneous CRS by introducing a
CCC in the form of a so-called Radio Enabler. Corresponding
studies were also undertaken in the context of the ETSI
Reconfigurable Radio Systems Technical Committee (ETSI
RRS TC) [15], [16]. In recent years, a number of papers
have been published detailing usage examples and advantages
of such a channel; for example, [17] illustrates how a CPC



may be exploited for orchestrating a heterogeneous indoor-
environment, [18] introduces user-context dependent Virtual
Connectivity Maps and details how the behavioural statistics of
a radio node can be modeled based on Markov-models whose
parameters can then be distributed via a cognitive channel,
and the already mentioned [7] illustrates how such a channel
is straightforwardly exploited for distribution and collection of
radio measurements and other relevant parameters. As already
noted, however, the set-up of such a channel still relies in most
cases on a neighbour discovery phase. Solutions for neighbour
discovery will be presented in Section III.

III. NEIGHBOUR DISCOVERY

Different classes of networks can be identified with respect
to the issues posed in the neighbour discovery phase. A basic
distinction can be made between single channel networks,
where all devices share the same channel, and multiple channel
networks, where each device can tune to different channels; the
latter case is by far the most common one in current wireless
networks. Cognitive networks can be seen as a special case of
multiple channel networks, as will be discussed in detail later
on in this Section.
In the following the case of two devices carrying on neighbour
discovery will be considered. Under the assumption that a
device is equipped with a single transceiver, and is thus only
capable to listen and transmit on one channel at the time,
performance of neighbour discovery is measured in this case
by two parameters:

• Probability of selecting the same channel Pc

• Probability of successful discovery on same channel PD

The probability of successful neighbour discovery PSND can
be defined as:

PSND = Pc · PD (1)

where Pc decreases as the time spent in a channel increases,
while PD decreases as the number of channels m increases. If
the time required to span all channels is shorter, the average
Time To Rendezvous (TTR) for a given PD will be lower
as well; on the other hand, less time on each channel will
reduce PD. The impact of the two probabilities defined above
on the overall neighbour discovery performance can be shown
by considering a simple random neighbour discovery scheme
where each of the two devices cycles through three possible
states:

• INQUIRY the devices sends packets of duration Tpacket;
• SCAN the device listens for INQUIRY packets;
• IDLE the device does not participate in neighbour

discovery, as it is busy with other activities (e.g. sending
traffic in a network it is already associated with, or
entering in sleep to save energy).

In the considered scheme, a device spends a time Tchannel

on each of N available channels, and a portion Tidle of
each Tchannel is spent in IDLE state, while the remaining
time is equally distributed, in average, between INQUIRY
and SCAN states. Devices switch between channels every
Tchannel seconds in a random fashion. The impact of the
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Fig. 1. Average time for successful discovery in the case Tidle =
Tchannel/2.

number of channels available to the devices as well as of the
time spent on each channel, Tchannel, is presented in Figure
1 for the case Tidle = Tchannel/2. Figure 1 highlights that
the average time required for succesful neighbour discovery
increases with the number of channels, as well as with the
time spent on each channel.
The efficiency of the neighbour discovery is also the result
of decision regarding its impact on energy efficiency and
network performance. Performance of the neighbour discovery
algorithm can be in fact improved by reducing the time spent
by each device in IDLE state, at the price of higher energy
consumption and/or lower network performance, depending
on the actual use reserved by devices to the time spent in
IDLE state. An efficient solution for global network operation
should thus optimize the amount of time and resources
reserved to neighbour discovery, in order to guarantee the
required performance for discovery without unnecessarily
hinder other network operations or energy efficiency.

Cognitive networks can be seen as multiple channel net-
works, and as such share the issues presented above. Cognitive
networks must however face additional challenges related to
the coexistence with other radio systems:

• The available radio resource (i.e. available channels)
varies over time due to activity of other radio systems;

• The available radio resource can be different for different
terminals in the same network due to different geographic
positions influencing the sensing results.

The presence of detection errors, in particular, may lead to
significant degradation of neighbour discovery performance.
In order to highlight the impact of sensing, one can refer to
the simple neighbour discovery scheme introduced above, and
extend it by taking into account the impact of sensing in the
determination of the set of available channels by each of the
two devices involved in the discovery.
Under the assumption that devices have no way to exchange
information on the common available channels, they will
search over potentially different sets as a result of individual
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Fig. 2. Average time for successful discovery as a function of probability
of false alarm and number of channels in the case Tidle = Tchannel/2.

TABLE I
COMPARISON OF AMOUNT OF INFORMATION AND SYSTEM PROPERTIES
REQUIRED FOR DIFFERENT NEIGHBOUR DISCOVERY MODELS (DRAWN

FROM [2])

Assisted Roles Shared Individual Free-for-all

Synchronization available YES YES

Heterogeneous roles YES YES

Number of radios n 2 2 2 n

Common spectrum naming YES YES YES

Master controller YES

Wideband operation YES

Control channels YES

Fairness YES YES YES YES

Common spectrum YES YES YES

Detection errors NO NO NO NO

Malicious radios NO NO NO NO

sensing decisions. The values of the probabilities of false alarm
and detection characterizing the sensing module will thus
influence the efficiency of the neighbour discovery process.
Figure 2 presents the average time to successful neighbour
discovery as a function of the number of channels and of
the probability of false alarm, again for the case Tidle =
Tchannel/2. Figure 2 shows that the probability of false alarm
has a significant impact on the time required to select the
same signal, and a more dramatic effect can be observed by
considering higher probabilities of false alarm.
The design of robust and efficient neighbour discovery
schemes is thus of key importance in the effective deployment
of cognitive networks. A key aspect in the design of such
schemes is to determine the amount of information required
for the scheme to operate. Under this aspect, the work in [2]
provides an interesting classification of neighbour discovery
schemes in term of underlying assumptions. The classification
proposed in [2], based on a large set of parameters related
to the amount of common information available to network
devices, is summarized in Table I, where five different models
of neighbour discovery schemes are identified, in increasing
order of complexity, from Assisted to Free-for-all. Table I
highlights that models taking into account detection errors are

Mobile device

moving at speed v
Common coverage area 

of the N networks

Candidate networks available to mobile device

Fig. 3. Reference scenario considered in this work.

the most complex to address, as they are characterized by the
minimum amount of common information between devices.

IV. IMPACT OF NEIGHBOUR DISCOVERY ON DISTRIBUTED
LEARNING

The establishment of the common control channel at the
basis of the information exchange required by the distributed
learning process introduced in Section II will in most cases
be the result of a neighbour discovery phase. In particular,
the common control channel is used by mobile devices and
networks to exchange the information required by a device to
evaluate the conditional probabilities introduced in Section II,
so to determine the best candidate network to achieve a given
QoS for a given application.
Under ideal conditions, the neighbour discovery phase is
assumed to be always successful, so that all devices and
networks within radio coverage are able to communicate and
exchange the context information needed for optimal network
selection. In this case, it is shown in [19], for a scenario
characterized by a device selecting between two candidate
networks, that optimal selection based on context information
leads to better performance than legacy selection schemes,
in particular when one of the candidate networks shows a
variation in the offered QoS.
The reference scenario is the one envisioned in Figure 3, where
a mobile device enters an area where N candidate networks are
available, and has a limited time TND to complete neighbour
discovery and start communicating over the selected network.
The overall time T for which the given set of networks will
be available is determined by the ratio between the coverage
range R of the networks and the speed of the mobile device
v; it can be safely assumed that in order for the scenario to
make sense, the network discovery time must be significantly
lower than the total available time, that is TND/T � 1.
In order to assess the impact of imperfect neighbour discovery,
one can model the optimal network selection scenario as a
neighbour discovery problem where N+1 entities, given by
the mobile device and the set of N candidate networks, try to
complete discovery in order to establish a common channel
and exchange the context knowledge. In the worst case, such
a scenario is characterized by the need of all N+1 entities
to reach reciprocal awareness and exchange information, each
entity potentially adopting a different set of available channel
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Fig. 4. Neighbour discovery failure rate as a function of probability of false
alarm and number of channels in the case TND = 2s.

as a result of different propagation conditions and different
sensing decisions. Such a worst case would fall in the Free-
for-all category seen in Section III and introduced in [2] and
would thus constitute a difficult neighbour discovery problem.
Even in the more favourable case, when the device is only
required to connect to any of the N networks, neighbour
discovery could still prove challenging, in particular in the
case of medium-to-high mobility and in presence of detection
errors. As an example, Figure 4 shows the failure rate in
neighbour discovery for the random algorithm introduced in
Section III as a function of the probability of false alarm
and of the total number of channels, assuming a device speed
v = 5m/s, a coverage range R = 1000m, and imposing that
TND/T = 0.01, leading to TND = 2s. Figure 4 highlights
that when the number of channels is low, even low values
of probability of false alarm can lead to significant failure
rates. In the network selection problem this would translate
in a device failing to receive context information regarding a
network, potentially reducing the achievable performance.

V. CONCLUSION

This work focused on the interaction between neighbour
discovery and a network selection scheme based on distributed
learning of context information. Key issues related to neigh-
bour discovery in multiple channel and cognitive wireless
networks were introduced, and trade-offs between neighbour
discovery performance and global network performance and
energy efficiency were identified. Next, an optimal network
selection algorithm based on context information exchanged
and updated by means of distributed learning was introduced.
The role of a common control channel in context information
exchange was discussed, and ongoing activity regarding the
definition of such a channel reviewed. In particular the need for
a neighbour discovery phase in order to set-up such a channel
was identified. Finally, the impact of neighbour discovery on
the selection scheme was discussed by introducing a model
for mapping the context information exchange to a neighbour
discovery problem showing how failures in neighbour discov-
ery may impact the performance of distributed learning, and

calling for a joint performance evaluation, to be addressed in
future work.
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