
 

  
Abstract— This paper investigates the effect of introducing 

cognitive mechanisms in the routing module of a wireless 
network. A routing cost function that incorporates 
measurements of both internal network status and 
instantaneous behavior of external world is described. The 
proposed cost function is analyzed by simulation in the 
framework of IEEE 802.15.4a-like low data rate and low cost 
networks for mixed indoor/outdoor communications. The 
analysis focuses on the impact of MUI modeling on network 
performance. Results indicate that MUI-awareness, as 
provided by the proposed cognitive cost function, may improve 
network performance in terms of network lifetime. Based on 
this analysis, a mechanism for learning from previous routing 
decisions and adapting the routing cost function to MUI 
conditions is introduced. 
 

Index Terms—Cognitive Routing, Cognitive UWB  

I. INTRODUCTION 
HE introduction of the cognitive principle in the logic 
of a wireless network requires extending the cognitive 
concept to rules of operation that take into account the 

presence of several nodes in the network as well as their 
instantaneous configuration. Moving from the original 
concept of “cognitive radio” [1], aimed at defining and 
developing technologies that can enable a radio device to 
adapt its spectrum according to the operating environment, 
the design goal is the definition a network of smart devices 
that must be capable of efficiently coexist in a given 
geographical area by using cooperation. This goal requires 
the integration of cognitive principles in the rules of 
interaction between nodes in the network: the set of wireless 
nodes should form a social network that must be modeled 
and analyzed as one entity in order to optimize the design of 
network functions such as resource management and 
routing. 

This investigation focuses on introducing the cognitive 
principle in the logic of a wireless network as regards 
routing. The proposed routing function incorporates 
measurements of the instantaneous behavior of external 
world, as represented for example by current network status 
in terms of interference suffered by the overlaid network, 
and extends previous work presented in [2]. 
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The framework that we consider for our research refers to 
low data rate and low cost networks for mixed 
indoor/outdoor communications investigated within the 
IEEE 802.15.4a Task Group. The activities within the 
802.15.4a Task Group led to the definition of the IEEE 
802.5.4a standard in mid-2007 [3]. The standard foresees 
the adoption of an Impulse Radio Ultra Wide Band (IR-
UWB) physical layer, capable of providing the accurate 
ranging information required for accurate positioning; 
furthermore, a simplified Medium Access Control based on 
Aloha is introduced in the standard, taking advantage of the 
robustness of UWB to Multi User Interference (MUI) [4]. 

The paper is organized as follows. In Section II we 
review previous work on the cognitive routing problem, and 
provide a description of the main contributions on this topic.  
Section III introduces the model for the routing module, i.e. 
the relevant criteria for route selection (power limitation, 
battery limitation, synchronization, interference, 
coexistence, etc.), that extend those presented in [2]. Next, a 
routing cost function that takes into account such criteria is 
introduced. The approach is analyzed and investigated by 
simulation as described in Section IV. Section V concludes 
the paper. 

II. PREVIOUS WORK 
Research activities related to the introduction of cognition 

in the routing process have been carried out in the last 
fifteen years with particular interest to the introduction of 
learning capabilities in the routing algorithm. In the 
following, we start our review from earlier work on 
cognitive routing, that mainly addressed the case of fixed 
and wired networks, and focused on the optimization of 
internal network behavior, without considering the problem 
of interaction with external systems [5]-[8]. We then 
analyze more recent work, where the growing interest for 
cognitive radios led to the proposal of routing protocols 
capable of coping with the frequent topology changes due to 
the channel switching of cognitive radios forming the 
network [9]-[12]. 

In [5] the authors propose the application of computing 
intelligence to the routing problem, by introducing a set of 
agents inspired to the behavior of ants in an ant colony. The 
agents, which can be implemented in the form of probe 
packets, explore the network in order to collect information 
on average end-to-end delay, and propagate backward in 
order to update the intermediate routers according to the 
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collected information. 
The authors move from previous work on artificial 

colonies-based routing and introduce learning capabilities 
by means of a reinforced learning mechanism based on 
artificial neural networks. The proposed solution can be 
summarized as follows: 
• An artificial neural network is implemented in each 

router. The neural network receives as input the 
probability of selecting each possible next hop towards 
a given destination and the average trip time towards 
that destination using each possible next hop, and 
provides as output the new values of probabilities and 
estimated trip times to the same destination for each 
possible next hop; 

• At each hop, a forward ant traveling to a given 
destination selects the next hop by using the artificial 
neural network; 

• When an ant propagates backward from the destination 
to a previously visited node, it updates the weights of 
the neural network and the routing table according to 
the measured trip time to the destination, thus 
modifying the behavior of the neural network and the 
choices of the following ants. 

Simulation results reported in [5] show that the 
introduction of learning capabilities can improve routing 
performance, leading to a slight increase in throughput and 
a significant reduction in end-to-end delay. 

The approach proposed in [5] for the behavior of a single 
node can actually be mapped on the cognitive cycle as 
defined by J. Mitola [1]. Each node in the network observes 
the system status by receiving the measurements provided 
by the ants, and takes decisions according to the 
observation. Furthermore, both the system status and the 
impact of previous decisions are taken into account in the 
learning process, impacting future decisions. Overall, 
network behavior is thus the result of independent cognitive 
cycles taking place in each network node. 

The concept of cognitive routing is addressed more 
thoroughly in [6]. In this work the authors move the 
learning capability from the node to the packet, by 
introducing the concept of Cognitive Packets. A Cognitive 
Packet (CP) is divided in four parts:  
• the ID field (for identifying the packet and its class of 

service),  
• the DATA field (carrying user data),  
• the Cognitive Map field, 
• the Executable Code field. 

The two latter fields are related to the cognitive routing 
algorithm. The Cognitive Map contains a network map, that 
is, an estimation of the state of the network based on 
previous information collected by the packet. The 
Executable Code implements a decision-taking algorithm 
that operates using the CM field as an input, and a learning 
algorithm for the update of the CM. Furthermore, the 
decision-taking and learning algorithms take into account a 
predefined goal set for the packet, that is a performance 
metric to be optimized, such as minimum delay or 
maximum throughput. 

Nodes in the network play essentially two roles: a) they 

provide storing capability in the form of Mailboxes, that can 
be read or written by Cognitive Packets; b) they execute the 
Executable Code contained in each received packet. 

Whenever a CP is received by a node, the node executes 
the code stored in the Executable Code field of the packet; 
the input to the code is constituted of the Cognitive Map 
stored in the node itself, and the content of the Mailbox in 
the node. As a result of the code execution any of the 
following actions can be performed: 
• the Cognitive Map in the packet is updated; 
• the Mailbox in the node is written; 
• the packet is sent on an output link; 
• the packet is kept in a buffer waiting for a given 

condition to be met. 
The authors compare the performance of their Cognitive 

Packet Network with a straightforward shortest path 
algorithm, and show that even in the case of very simple 
learning and decision-taking algorithms their approach can 
improve performance in terms of packet loss and delay. 
Even larger improvements in network performance can be 
obtained when more complex learning algorithms, such as 
neural networks, are implemented in the Executable Code 
field. 

The approach proposed in [6] poses, however, several 
implementation challenges, in particular in terms of routing 
overhead due to the code to be stored in each packet. Later 
evolutions of the approach moved back to a more traditional 
approach, where the learning and decision-taking code is 
stored in the nodes, and its execution is triggered by the 
arrive of Cognitive Packets [7]. Furthermore, Cognitive 
Packets only constitute a small fraction of overall packets 
and do not carry any user data information, leading to a 
solution similar to the one later proposed in [5], that was 
described above. 

In the original formulation of the CPN approach, the 
Cognitive Map field poses an overhead issue as well, since 
the number of observations grows with path length, and thus 
with the size of the network. In order to solve this issue, a 
modified version of the protocol was proposed in [8], in 
order to improve scalability and reduce overhead, making 
the protocol potentially suitable for wireless networks as 
well. 

In [9], [10] the authors propose a routing metric that 
models the end-to-end delay by taking into account both the 
average delay introduced by collisions on a single frequency 
band and the delay introduced by each channel switch 
required along the path. 

The work presented in [11] addresses the same problem 
by proposing a solution for spreading the information on the 
positions of the nodes and the channels available to each 
node, in order to enable efficient routing. The proposed 
information exchange protocol, based on a broadcast packet 
exchange, is however only tested in a very favorable 
scenario, characterized by an error-free channel and 
collision-free medium access. 

An additional characteristic of cognitive radio networks 
that may impact routing is the fact that the network can be 
formed by devices complying to different wireless 
standards. Furthermore, a network node can potentially 
support more than one wireless network interface. The 
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routing protocol proposed in [12] deals with this aspect, by 
introducing a routing metric that models the different 
characteristics of each radio link available between network 
nodes. The metric is used to build a routing tree between a 
base station and wireless nodes in the network. 

Channel switching is only one of the possible solutions to 
allow coexistence between cognitive secondary users and 
primary users. Ultra Wide Band radio offers an alternative 
solution: thanks to the huge bandwidth used by the UWB 
signal and the low power levels allowed by regulation, an 
UWB signal is in most cases invisible to the primary user. 
The main problem in routing within an UWB network is 
thus to cope with the interference caused by primary users. 
This goal can be achieved by including the interference 
generated by such users among the routing criteria. A 
cognitive routing model that addresses this problem, 
evolved from the one originally proposed in [2], is 
illustrated in the following sections. 

III. COGNITIVE ROUTING STRATEGY AND COST FUNCTION 
Our research is framed within the area of UWB ad-hoc 

and self-organizing networks. As a consequence we assume 
that the MAC strategy adopted in the network is based on 
the assumptions of our previously investigated (UWB)2 
protocol [13]. The basic hypothesis of (UWB)2 is 
uncoordinated access in an ALOHA like fashion. The Aloha 
approach that forms the basis of (UWB)2 was actually voted 
with a large majority of votes as the medium access strategy 
for the IEEE 802.15.4a standard, although a CSMA 
approach is also available for optional operational modes. 

As regards routing strategies, key issues that must be 
taken into account in the selection of a multi-hop route were 
analyzed in [2], and can be listed as follows: 
– Synchronization 
– Power 
– Multi-User Interference (MUI) 
– Link reliability  
– Traffic load 
– End-to-end delay 
– Battery autonomy 
– Coexistence. 

According to the above criteria, a cognitive routing cost 
function defined as the sum of different sub-costs was also 
proposed in [2]. The expression for the routing cost function 
can be written as follows: 
 

UWBCost x,y( )= cSync t( )⋅ Sync x,y( )+ cPower t( )⋅ Power x,y( )+

+c MUI ⋅ MUI x,y( )+ c Reliability t( )⋅ Reliability x, y( )+

+cTraffic t( )⋅Traffic y( )+ cDelay t( )⋅ Delay x,y( )+

+cAutonomy t( )⋅ Autonomy y( )+ cCoexistence t( )⋅Coexistence y( )

 (1) 

 
Note that some terms in Eq (1) depend on the status of 

both transmitter and receiver x and y, while others such as 
the Traffic, Autonomy and Coexistence terms only take into 
account the status of receiver y. Sub-cost coefficients are 
assumed to be dependent upon time t; this assumption 
accounts for time-varying properties of the network, such as 
variable topology, traffic features, and degree of cognition 
in the nodes. 

In the following we propose a possible way for defining 
each term of the cost function separately. 

A. Synchronization term 
This term can be defined as follows: 

 
Sync x,y( )= δ x,y( )  (2) 

 
where δ(x,y) is 0 if nodes x and y already share an active 

connection, and 1 otherwise. 
Given the (UWB)2 access protocol, synchronization 

between transmitter and receiver must be acquired from 
scratch for all random packets involved in setting up a link. 

B. Power term 
Smart management of available power in order to 

optimize network performance while meeting the emission 
limits for UWB devices is required. As a consequence, 
power issues should be paramount in route selection, in 
order to efficiently make use of available power. The 
concept of power-aware routing for ad-hoc networks was 
widely investigated ([14], [15]). 

We define the power term as follows: 
 

Power x,y( )=
d x,y( )
dmax

 

 
  

 

 
  

α

 (3) 

 
where d(x,y) is the distance between x and y, dmax is the 

maximum transmission distance from x as estimated by x 
that still guarantees a target SNR, and α is the path loss 
exponent. This term takes into account the power required 
to transmit over the link between x and y for a given SNR, 
normalized by the maximum transmit power. In order to 
compute the power term the receiver node y must have an 
estimate of distance d(x,y); this information is expected to 
be provided by the UWB ranging module. An estimate of 
dmax can be obtained from the value of the maximum 
transmit power Pmax at node x; in the case that all terminals 
have same Pmax, an explicit computation of such quantity is 
not necessary. 

C. MUI term 
This term takes into account the potential impact of a 

transmission from x to y on the neighbors of x. 
With regards to MUI, a node x should be avoided if either 

of the following conditions is met: 
1. x has a large number of neighbors that could be 

adversely affected by its transmission; 
2. x has a neighbor at very short distance, that would be 

subject to a strong interference during transmission by x. 
Given the ranging capability provided by the UWB 

physical layer, we proposed in [2] to use distance 
information in order to model the impact of x as determined 
by the two above conditions. Building on this approach, we 
define here a refined MUI term that includes both distance 
and traffic activity of nodes. The new term is defined as 
follows: 
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MUI x, y( )=
1

NaNeighs x( )
C n( )
maxC

1−
d x,n( )
dmax/ y











2

n=0, n≠y

NaNeighs x( )−1

∑  (7) 

 
where: 

– NaNeighs(x) is the number of active neighbors of x, that is 
neighbors that are involved in at least a data 
connection; 

– n is the generic active neighbor, excluding y; 
– C(n) is the number of data connections actually 

sustained by node n. 
– maxC is the maximum number of data connections a 

node can join simultaneously. 
– dmax/y is the distance between x and its furthest 

neighbor, excluding y. 
– d(x,n) is the distance between x and  n. 

D. Reliability term 
We measure the reliability of a link (x,y) as the 

combination of two factors: 
• the number of packets exchanged between x and y 

within a predefined observation interval: the higher is 
such number, the higher is the expected stability of the 
link; 

• the MUI potentially affecting the intended receiver y. 
According to this approach, the term is defined as 
follows: 

 

Rel x, y( )=
1
2

1
N packets x, y( )













+

+
1
2

1
NaNeighs y( )

C n( )
maxC

1 −
d n,y( )
dmax/ x







2

n=0, n≠x

NaNeighs y( )−1

∑












 (8) 

 
where: 
– Npackets(x,y) is the number of packets y received from 

x in the last observation interval;  
– NaNeighs(y) is the number of active neighbors of node 

y; 
– n is the generic active neighbor, excluding x; 
– dmax/x is the distance between y and its furthest 

neighbor, excluding x. 
The stability of the link, expressed by the number of 

packets that y has received from x at a given time, implicitly 
takes into account node mobility. Expected MUI also affects 
reliability and is evaluated as in previous section, but with 
reference to receiver y. 

E. Traffic term 
The analytical expression for this term writes: 
 

  
Traffic y( )=

1
Bmax y( )

Bi
i=0

Nactive (y)−1

∑  (9) 

 
where: 

– Bmax(y) is the maximum overall rate that can be 
guaranteed by node y;  

– Bi is the rate of the i-th active connection involving y; 
– Nactive(y) is the total number of active connections at y. 

As pointed out in [2], this term avoids unfair selection of 

routes by increasing the cost of routes including nodes 
already involved in many active connections. 

F. Delay term 
This term is defined as follows: 
 
Delay x,y( )= 1 (10) 
 
To a first approximation, the end-to-end delay can be 

considered to be proportional to the number of hops; in this 
case, this term is constant. 

G. Autonomy term 
We give the following expression to the autonomy term: 
 

( ) ( )
( )

1
ResidualEnergy y

Autonomy y
FullEnergy y

= −  (11) 

 
where FullEnergy(y) is the energy available in y when the 

node is first turned on. ResidualEnergy(y) is the energy that 
is left at time of evaluation of the term. 

H. Coexistence term 
The coexistence term can be defined as follows: 
 

( ) ( )
( )

MeasuredExternalInterference y
Coexistence y

MaximumInterference y
=  (12) 

 
Note that the introduction of this term requires that the 

UWB receiver can measure the level of narrowband 
interference. 

IV. SIMULATIONS 
In the simulation analysis we implemented the model 

described above, focusing on the effect of the two terms: 
end-to-end delay and MUI. The effect of other terms was 
analyzed in previous investigations, as described in [2], 
[16]. 

A. Simulation scenario 
We considered a network of UWB devices following 

IEEE 802.15.4a specifications, and adopting thus a Time-
Hopping Impulse Radio transmission technique [17].  

Main simulations settings are presented in Table I. 

TABLE  I.  SIMULATION SETTINGS 

Parameter Setting 
Number of nodes 40 

Area 200 m × 200 m 
Network topology Random node positions 

Channel model 802.15.4a (see [18]) 
User bit rate R 20 kb/s 

Transmission rate 1 Mb/s 
Transmission power 36.5 µW  

Traffic model CBR connections with random uniform 
duration in the interval [5-20] s 

DATA packet length 320 bits (+ 64 bits for Sync trailer) 
Interference Model Pulse Collision (see [19]) 

Transmission settings Ns = 10, Ts = 100 ns, Tm = 1 ns 
 
All devices adopt the (UWB)2 MAC protocol [13].  
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B. Cost function settings 
We compared two different coefficient sets in the 

scenario defined in Section IV.A. The coefficient sets are 
presented in Table II. Note that the coefficients of the other 
terms are set to zero in the investigation presented in this 
paper (see [2], [16] for the analysis on other terms). 

TABLE  II.  COEFFICIENT SETS 

Coefficient Set 1 Set 2 
CDelay 1 0.0001 
CMUI 0 1 

 
Set 1 only takes into account delay in the determination 

of the best path. Given the definition of the Delay cost term 
in Section III.F, set 1 leads to the selection of the path 
characterized by the minimum number of hops. 

Set 2 favors the selection of paths minimizing the MUI 
cost, and aims at reducing the impact of MUI on network 
performance. 

C. Simulation results 
The two coefficient sets defined in Section IV.B were 

compared in terms of end-to-end throughput and network 
lifetime, expressed by the time at which the first node runs 
out of battery from network start-up. The coefficient sets 
were compared under three different traffic scenarios: a 
Low Traffic scenario, characterized by an average time Treq 
between two connection requests set to Treq=20 s, a Medium 
Traffic scenario (Treq=10 s), and a High Traffic scenario 
(Treq=5 s). 

End-to-end throughput measured for the two coefficient 
sets in the three scenarios is presented in Fig. 1. 

 
Fig. 1. Throughput for the coefficient sets defined in Table II. 

 
Results highlight that the adoption of a routing cost 

function that takes into account the impact of MUI (Set 2) 
does not lead to an advantage in terms of throughput. This 
result can be explained by observing that the UWB physical 
layer considered in the simulation scenario provides a high 
robustness to MUI. As a consequence, MUI is not the main 
source of packet loss.  

It should be noted however that the introduction of MUI 
awareness does have a positive effect on Packet Error Rate 
(PER): simulation results indicate in fact that Set 2 leads to 
a slightly lower PER than Set 1, as shown in Fig. 2. 

 
Fig. 2. Packet Error Rate for the coefficient sets defined in Table II. 

 
The improvement on PER is however compensated by the 

increase in the average number of hops per connection 
introduced by Set 2, as shown in Fig. 3. 

 
Fig. 3. Average number of hops for the coefficient sets defined in Table II. 

 
Overall, the combination of the lower PER and the higher 

average number of hops leads to a slightly higher end-to-
end packet loss, and thus a lower throughput. 

Network lifetime measured for the two coefficient sets is 
presented in Fig. 4. 

 
Fig. 4. Network lifetime for the coefficient sets defined in Table II. 

 
Fig. 4 highlights that the adoption of a MUI-aware 

coefficient set leads to a longer network lifetime, thanks to a 
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more uniform distribution of traffic among network nodes. 
This result further confirms that the selection of minimum-
hop routes does not lead to a fair use of node energy, in 
accordance to the results obtained in [2], [16]. 

V. DISCUSSION AND CONCLUSIONS 
In this paper we analyzed the problem of optimal choice 

of a multi-hop route in a network of low data rate UWB 
terminals of the IEEE 802.15.4a type. Moving from the 
work started in [2], we proposed a cognitive routing cost 
function that takes into account the status of both the UWB 
network and the external environment by means of additive 
cost terms weighted by a set of coefficients.  

In the present work we focused on the impact of the MUI 
term on network performance in a low rate traffic scenario, 
by measuring end-to-end throughput and network lifetime 
by means of computer simulations. 

Results show that in the case of an UWB network 
scenario the adoption of a MUI-aware routing function has a 
strong positive effect on network lifetime, almost doubling 
the time before the first network node expires. End-to-end 
throughput, on the other hand, does not show significant 
improvements: this result is justified by the fact that IR-
UWB has an intrinsic robustness to MUI. Results suggest 
thus that the best choice is to select a coefficient set that 
combines delay and MUI minimization, adjusting the 
relative weight of the two components according to the 
specific characteristics of the underlying physical layer in 
terms of MUI. The adjustment of the cost coefficients 
should be part of the routing module operations in 
accordance to the concept of cognitive routing. A possible 
way to select the weights could be to estimate the PER, in 
order to determine the impact of MUI in packet loss, thus 
learning from previous routing decisions and modifying the 
routing strategy accordingly. 
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