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1s0010 Introduction
p0010 Indoor localization of wireless mobile devices, also referred to as indoor positioning, is

nowadays an intensively investigated research topic, toward the extension of outdoor
location-based services to indoor environments. Among the available communication
technologies and infrastructures, Wi-Fi appears as an excellent localization support, since
it is largely widespread in indoor environments, implying low implementation time and
costs (Liu et al., 2007).

p0015 Fingerprinting is one of the most investigated techniques for the implementation of
Wi-Fi indoor positioning systems (IPSs) (Honkavirta et al., 2009). It relies on a preliminary
collection of location-dependent signal propagation data at predefined positions in the
area of interest, called reference points (RPs). Received signal strength (RSS) collection is
common in implementing Wi-Fi fingerprinting IPSs, and leads to defining the fingerprint
as the set of RSS values, measured in a given RP, from nearby Wi-Fi access points (APs)
(Bahl and Padmanabhan, 2000).

p0020 RSS fingerprinting is typically organized in two phases: offline and online. In the offline
phase, an RSS fingerprint is collected at each RP, in order to create a discrete radiomap
of the area. In the online phase, the unknown position of a target device is estimated as
a function of the position of RPs, that best matches the online reading, that is the RSS
fingerprint measured by the target device.

p0025 Accuracy and complexity of fingerprinting mainly depend on two factors: (1) a careful
planning of the offline phase, particularly in terms of RP locations and number of mea-
surements, and (2) an optimized definition of the estimation algorithm used in the online
phase.
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p0030 As regards the offline phase, the goal is to achieve a satisfactory trade-off between

AU1

positioning accuracy, and efforts and time dedicated to the collection of RPs. Previous
work highlighted the impact of human body and device orientation on measured RSS
values, and the need for multiple measurements at each RP, in order to counteract channel
variability and measurement errors (Hossain et al., 2007; Liao and Kao, 2008; Honkavirta
et al., 2009; Kessel and Werner, 2011). Furthermore, in order to limit the measurement
effort, two main approaches have been proposed:

•u0010 RSS prediction: Most of the RSS values are predicted, rather than measured. RSS
prediction may be used either for the generation of virtual RPs, leading to discrete
virtual fingerprinting, or for the evaluation of continuous RSS distributions, leading to
continuous virtual fingerprinting. RSS prediction may be obtained by either indoor
propagation modeling, in which an empirical radio propagation model, trained with a
set of initial measurements, is used, or by interpolation, in which adjacent real RPs are
interpolated (Chintalapudi et al., 2010; Kumar et al., 2016; Hernández et al., 2017).

•u0015 Crowdsourcing : System users also contribute to the collection of RSS fingerprints
(Bolliger, 2008). Application of crowdsourcing entails a further challenge, that is
heterogeneity, in terms of RP locations and devices used for collection, as they both
depend on users (Laoudias et al., 2013).

Considering the online phase, the goal is to achieve a satisfactory trade-off between
positioning accuracy and algorithm complexity, by decreasing the average number of
online operations required for position estimation. As regards the online procedure,
deterministic (Bahl and Padmanabhan, 2000; Shin et al., 2012; Caso et al., 2015b), and
probabilistic (Roos et al., 2002; Youssef and Agrawala, 2004; Le Dortz et al., 2012) weighted
k-nearest neighbors (WkNN) schemes are, by far, the most widely investigated. In par-
ticular, deterministic WkNN is highly appealing, since it requires the evaluation of a
simple deterministic similarity metric between the online reading and each RP fingerprint.
Previous work highlighted the impact on the achievable accuracy of the value of k, and
the similarity metric used for RPs selection and weighting (Caso et al., 2015b). As regards
the reduction of the online operations, the adoption of two-step algorithms was proposed
(Youssef et al., 2003; Feng et al., 2012; Yu et al., 2014), in which:

•u0020 The offline phase is organized in RPs collection and clustering, during which
measurements are collected and then divided into nonoverlapping groups, according
to the adopted similarity criterion.

•u0025 The online phase is organized in coarse and fine localization. During coarse
localization, the online reading is compared with a fingerprint associated with each
cluster, according to the adopted similarity metric; only the RPs within clusters passing
a predefined similarity threshold are used in fine localization, where a traditional
WkNN estimator can be then applied.

The main goal of two-step algorithms is to reduce the online complexity, by reducing
the RP space. While for a generic WkNN flat algorithm, in fact, all RPs are compared with
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the online reading, in order to select the k most relevant ones, in two-step algorithms,
only RPs belonging to selected clusters are taken into account. Among others, the use of
Affinity Propagation (Frey and Dueck, 2007), that evaluates RPs mutual similarities, has
been proposed for the creation of clusters (Feng et al., 2012; Tian et al., 2013). As a result,
in Affinity Propagation two-step algorithms, the definition of the similarity metric has an
important role at RP clustering, and coarse and fine localization phases.

p0035 This chapter analyzes and discusses the trade-off between accuracy and complexity,

AU2

within offline and online phases of Wi-Fi fingerprinting IPSs. The main goal is to identify
and derive low-complexity strategies, leading to a simple system implementation, while
preserving the achievable positioning accuracy.

p0040 As regards the offline phase, a strategy adopting RSS prediction, in the form of discrete
virtual fingerprinting via indoor propagation modeling, is proposed, and compared with
traditional, real RPs only, deterministic WkNN (Caso and De Nardis, 2015, 2016; Caso et al.,
2016). As for online phase, Affinity Propagation two-step deterministic WkNN is compared
with traditional flat deterministic WkNN, in order to highlight factors, that mainly impact
on system complexity and accuracy (Caso et al., 2015a).

p0045 Experimental results reported in the present work were obtained in the testbed imple-
mented at the first two floors of the Department of Information Engineering, Electronics,
and Telecommunications (DIET) of Sapienza University of Rome.

p0050 The chapter is organized as follows: Sections 2 and 3 present the proposed low-
complexity strategies for offline and online phases, respectively. In both sections, the
reference model is first introduced, followed by a description of the testbed, experimental
settings, and performance indicators, and a discussion on the obtained results. Section 4
highlights main results, and the advantage of using the proposed low-complexity strate-
gies, and concludes the chapter underlying possible future research lines.

2s0015 Low-Complexity Strategy for Offline Phase
p0055 This section focuses on the description of the proposed low-complexity strategy for the

offline phase. As introduced in Section 1, a discrete virtual fingerprinting approach via
indoor propagation modeling is implemented, in order to decrease the effort in RSS mea-
surements, while maintaining a satisfying positioning accuracy. In particular, the empirical
multiwall multifloor (MWMF) indoor propagation model is adopted for the creation of
virtual RPs, while a traditional deterministic WkNN estimator is used in the online phase.

2.1s0020 RSS Prediction Via MWMF Model

p0060 The MWMF model (Damosso, 1999) is an appealing solution for indoor propagation
modeling, due to the good trade-off between simplicity and prediction accuracy (Borrelli
et al., 2004). MWMF takes into account objects that may obstruct the propagation over an
indoor link, leading to the following path loss model (Damosso, 1999):
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Table 1t0010 AMWMF Parameters’ Description

Parameters Description

lc Constant loss
Nobj Number of different families of 2D objects
In Number of types of 2D objects considered for family n
Nn,i Number of 2D obstructing objects of family n and type i
Nf Number of obstructing floors
ln,i Loss due to 2D objects of family n and type i
lf Loss due to obstructing floors
b Empirical 3D propagation parameter

PLMWMF = PLOS + AMWMF (dB), (1)

where PLOS models the path loss over the transmitter-receiver (Tx-Rx) distance d, while
AMWMF models the additional loss due to obstructing obstacles, that may be different in
nature and type, such as walls, doors, pipelines, and others. Details on both terms of Eq. (1),
with a particular focus on the peculiar MWMF term, that is AMWMF, are provided in Caso
et al. (2016). As regards AMWMF, a linear combination of different obstructing obstacles is
considered (Borrelli et al., 2004), and a generic description of parameters within this term
is reported in Table 1.

The use of the MWMF model requires an initial, hopefully small, set of M measure-
ments, and also, for each mth measurement (m = 1, 2, . . . , M ), the information regarding
number, type, and positions of objects obstructing the Tx-Rx direct path, indicated as the
set of topological parameters {Tm}. The measurements are used in order to estimate the set
of propagation parameters {S}, within PLOS and AMWMF terms, that characterizes the
model in the area of interest, such as path loss exponent and loss terms due to obstructing
objects. An iterative least square fitting procedure can be adopted, so to minimize the
difference between RSS initial measurements and predictions in the same M positions,
and in turn estimate {S}opt, as follows:

{S}opt = argmin
{S}

{ M∑

m=1

|RSSm − R̂SSm|2
}

, (2)

where, for the mth available measurement, RSSm and R̂SSm are the actual versus predicted
RSS values at the Rx, when considering a Tx emitting a known effective isotropic radiated
power (EIRP) WEIRP

Tx at distance dm. At each iteration, R̂SSm is computed as the difference
between WEIRP

Tx and the path loss evaluated as in Eq. (1), and the iterative procedure stops
when the difference with RSSm is minimized, and thus {S}opt is found.

p0065 The propagation parameters to be optimized, included in {S}, may differ depending on
the model definition, and may include parameters from both PLOS and AMWMF terms; the
set adopted in this work is reported in Caso et al. (2016).
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2.2s0025 Offline Phase

p0070 Given a set of L Wi-Fi APs at known positions in the area of interest A, initial measurements
in a set of N r real RPs are collected, so that an L × 1 RSS fingerprint sn1 is associated with
the n1th RP (n1 = 1, 2, . . . , N r). The generic sn1 component, denoted by sl,n1 , contains the
RSS measured by a reference Rx, placed at the n1th RP, from the lth AP. This value is usually
obtained by averaging q > 1 repeated measurements, in order to counteract propagation
channel variability and measurement errors.

p0075 The MWMF model is then used for the generation of virtual RPs. The model is first
calibrated on the set of N r real RPs, so that the derived propagation parameters are used for
the generation of further N v virtual RPs. The component ŝl,n2 of the generic L×1 fingerprint
ŝn2 contains the predicted RSS at the n2th virtual RP from the lth AP (n2 = 1, 2, . . . , N v).

p0080 Both the amount and the positions of real RPs are expected to affect the generation
of virtual RPs and the achievable positioning accuracy, since the amount, in particular,
defines the number of measurements considered in the model fitting procedure of Eq. (2).
Given N r real RPs, regularly spaced over a grid in the environment A of area |A|, their
spatial density is given by:

dr = N r

|A| , (3)

that defines the number of real RPs for each meter square of A.
p0085 In Caso and De Nardis (2015, 2016) and Caso et al. (2016), several strategies were

proposed for the use of real RPs in Eq. (2), toward the evaluation of the propagation
parameters for the MWMF model; in this work, a Specific AP Fitting strategy is adopted,
where the measurements at all RPs are discriminated considering the AP they refer to, so
that a different set of propagation parameters is obtained for each AP.

p0090 In analogy to Eq. (3), denoting with N v the number of virtual RPs to be generated, their
spatial density is given by:

dv = N v

|A| . (4)

Position of virtual RPs in A can be freely defined: in this work a grid placement is adopted,
as an extension of the commonly adopted real RPs placement.

2.3s0030 Online Phase

p0095 A deterministic WkNN estimation algorithm, using the combination of real versus virtual
RPs, is used to infer the target location. Denoting by N = N r + N v the total number of
RPs in A, sn the RSS fingerprint of nth RP (n = 1, 2, . . . , N ), and si the RSS online reading
collected during the ith positioning request by a target device in unknown position pi =
(xi , yi , zi), the position estimate relies on the computation of a set of similarity metrics
simn,i = sim(sn, si). The WkNN algorithm selects the k RPs that present the highest simn,i
values and provides an estimate of pi defined as:
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p̂i =
∑k

n=1(simn,i)pn
∑k

n=1 simn,i
, (5)

where pn = (xn, yn, zn) is the position of the nth selected RP, and p̂i = (x̂i , ŷi , ẑi) is the
estimated position of the target device. The similarity metric can be any deterministic
metric computable in the RSS space between vectors sn and si . A popular choice is the
inverse Minkowski distance of order o, defined as follows:

simn,i = [Do
n,i]−1 =








L∑

l=1

|sl,i − sl,n|o



1/o





−1

, o ≥ 1. (6)

Typical orders are o = 1 (inverse Manhattan distance) and o = 2 (inverse Euclidean
distance). Similarity metrics based on modified versions of the inner product between RSS
vectors have also been proposed (Torres-Sospedra et al., 2015; Caso et al., 2015a). In this
work, the inverse Euclidean distance is adopted as similarity metric.

p0100 As regards the value of k, it is selected as follows:

k = $0.05(dr + dv)|A|%, (7)

that is proved to be a reliable estimator of the optimal value of k, defined as the one
minimizing the average positioning error (Caso et al., 2016).

2.4s0035 Experimental Setting and Performance Indicators

p0105 Experimental analysis of the proposed low-complexity strategy was conducted in the
testbed at the DIET of Sapienza University of Rome. The testbed is deployed in an office
environment, and covers two floors with an area of approximately 42 × 12 m2 each. L1 = 6
Wi-Fi APs working @2.4 and 5 GHz and L2 = 7 Wi-Fi APs working @2.4 GHz, with a beacon
transmission period of Tb = 100 ms and a transmit power W EIRP

Tx = 20 dBm, are placed at
known positions at the first and second floors, respectively. On both floors, APs are placed
in the false ceiling of the central corridor, due to deployment constraint.

p0110 The second floor was adopted as area of interest A, and the APs on this floor were
considered in the fingerprinting measurement campaign, so that L = L2. During the
offline phase, N r,tot = 72 RPs were selected for RSS collection on a regular grid within A;
fingerprints were also collected in a set of N t = 31 target points (TPs) randomly distributed
over A. TPs were used as ground truth, in order to test the positioning accuracy of the
proposed scheme. In both cases, fingerprints were obtained as the average of q = 50
scans at each location. Furthermore, all measurements were carried out during weekend
afternoons, using a MacBook Pro equipped with an AirPort Extreme Network Interface
Card, placed on a wooden platform.

p0115 Two different analyses were carried out in order to demonstrate the advantage of using
the proposed low-complexity strategy:
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•u0030 Analysis I : Reliability of the MWMF model in generating virtual RPs.
•u0035 Analysis II : Effect of adopting the proposed virtual fingerprinting scheme on the

achievable positioning accuracy.

As regards Analysis I, MWMF reliability was evaluated as a function of the parameter
ρ, that determines the number N r of RPs used for the model fitting of Eq. (2), out of
the total number of measured RPs, N r,tot, so that N r = $ρN r,tot% (Caso et al., 2016). For
each considered value of ρ, the MWMF model was fitted, and RSS values in the N r,tot

RP locations were generated and compared with the collected ones, so to evaluate the
prediction error, as follows:

δl,n(ρ) = |sl,n − ŝl,n(ρ)|, (8)

where ŝl,n(ρ) is the predicted RSS for the generic (APl , RPn) pair, obtained by using a set of
N r = $ρN r,tot% RPs in the model fitting procedure, while sl,n is the measured RSS for the
same pair. Assuming the generic δl,n(ρ) value as a sample of a random variable δl(ρ) related
to the lth AP, the cumulative distribution function (CDF) of δl(ρ), that is Fδl (ρ)(δl,n(ρ)) =
Pr{δl(ρ) ≤ δl,n(ρ)}, and the average error δ̄l(ρ) =

∑N r,tot
n=1 δl,n(ρ)

N r,tot were also evaluated.
p0120 Considering Analysis II, positioning accuracy of the proposed strategy was evaluated as

a function of densities dr and dv, and adopting a value of k as in Eq. (7). The analysis was
carried out by computing the positioning error εi(dr, dv) for each TP i (i = 1, 2, . . . , N t) as
follows:

εi(dr, dv) =
√

(xi − x̂i)
2 + (yi − ŷi)

2, (9)

where (xi , yi) = pi and (x̂i , ŷi) = p̂i are the actual and the estimated positions of the ith
target device at the DIET second floor, respectively. As in the case of the prediction error
δl(ρ), the CDF of positioning error ε(dr, dv), that is Fε(dr,dv)(εi(dr, dv)) = Pr{ε(dr, dv) ≤
εi(dr, dv)}, and the average positioning error ε̄(dr, dv) =

∑N t
i=1 εi(dr,dv)

N t were evaluated.

2.5s0040 Results and Discussions

p0125 Fig. 1A shows the CDF of the prediction error δl(ρ) for the AP fitting strategy, a reference
AP, and four different values of ρ (note that ρ = {0.1, 0.2, 0.5, 1} lead to N r = {8, 15, 35, 72}
uniformly distributed RPs used in the model fitting procedure). Results show that slightly
different δl(ρ) errors are obtained as ρ increases from 0.1 to 1, suggesting that a relatively
small value of ρ (and in turn of N r and dr) is sufficient to obtain a reliable estimation of the
propagation parameters for the generation of virtual RPs, although a few measurements
are still required, due to the empirical nature of the MWMF model. Fig. 1B shows the CDF
of δl(ρ) for the AP fitting strategy (ρ = 1) against a baseline No Fit strategy with no fitting,
that is no use of measurements, and by obtaining RSS predictions using propagation
parameters estimated for a different area, and reported in Borrelli et al. (2004). Results
show that the prediction error significantly increases when no site-specific model fitting is
carried out.
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(A) (B)

FIG. 1f0010 CDFs of the prediction error δl(ρ) for a reference AP: AP fitting strategy (real RPs selection parameter
ρ = {0.1, 0.2, 0.5, 1}) (A), no fit versus AP fitting strategy (ρ = 1) (B).

Fig. 2 shows the average positioning error ε̄(dr, dv) of virtual fingerprinting, as a
function of dv, and four different values of dr, corresponding to the values of ρ and N r

adopted in the previous analysis (see Eq. 3). The value of k is fixed as in Eq. (7). Fig. 2 also
reports the average error obtained by adopting real RPs only fingerprinting, with a number
of real RPs corresponding to minimum and maximum values of dr. Results highlight a few
important aspects: on one hand, the introduction of virtual MWMF fingerprints does not
lead to performance improvement when a large enough amount of real ones is collected
(see, in particular, dr = 0.14 as a function of dv curve vs. dr = 0.14 with dv = 0 one). On
the other hand, a significant accuracy improvement is obtained, when a large amount of
virtual RPs (dv = 10) was predicted from a limited set of initial real measurements in the
offline phase, and used in the online phase (see dr < 0.14 as a function of dv curves vs.
dr = 0.02 and dr = 0.14 with dv = 0 ones). Furthermore, note that the error obtained
with virtual fingerprinting almost accommodates on the error of the optimal real RPs only
scheme, where a large amount of real RPs is used. The accuracy decrease is of about 60 cm
in the extreme case (dr = 0.02 as a function of dv).
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FIG. 2f0015 Average positioning error ε̄(dr, dv) for virtual fingerprinting, as a function of virtual RPs density dv, and four
different values of real RPs density dr; upper and lower bounds of the error are also shown, for real RPs only
fingerprinting with dr = 0.02 and dr = 0.14.

p0130 Results clearly show that creation and adoption of a large enough amount of virtual RPs
can significantly reduce the offline phase complexity, in terms of number of needed initial
measurements, while preserving achievable accuracy.

3s0045 Low-Complexity Strategy for Online Phase
p0135 This section focuses on the description of the proposed low-complexity strategy for the

online phase. As introduced in Section 1, an Affinity Propagation two-step algorithm is
implemented, in order to decrease the number of online operations required for a position
estimate, while maintaining a satisfying positioning accuracy. In particular, the offline
phase foresees an RP clustering step via Affinity Propagation, while the online phase is
divided into coarse (cluster selection) and fine (RPs selection and weighting) localization.

3.1s0050 RP Clustering Via Affinity Propagation

p0140 Affinity Propagation is a clustering algorithm, that divides a set of elements in clusters,
and elects for each cluster a representative clusterhead, also dubbed as exemplar (Frey and
Dueck, 2007). The algorithm usually follows a distributed and iterative approach: elements
are seen as network nodes which exchange messages containing computed values, that
measure the affinity of one element with another element, until it converges to a stable set
of exemplars and corresponding clusters.
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p0145 In the context of indoor positioning, since elements correspond to RPs, the algorithm
is centralized and, for each iteration, the requested values are evaluated by a central
processing unit based on an initial measure of similarity simCL

n1,n2
= simCL(sn1 , sn2) (with

n1, n2 = 1, 2, . . . , N , n1 '= n2) between each RP pair, where the superscript CL indicates
that such similarity values are evaluated during the clustering step, measuring how well
the RPn2 is suited to be the exemplar for RPn1 . The self-similarity value simCL(sn, sn) (with
n = 1, 2, . . . , N ), that is also dubbed as preference, indicates the possibility that RPn may
become an exemplar. In order to give all RPs the same chance to become an exemplar,
their preferences are initially set to a common finite value, typically defined as:

pref(sn) = simCL(sn, sn) = γ · median{simCL(sn1 , sn2)}, ∀n1, n2 ∈ {1, 2, . . . , N }, n1 '= n2,
(10)

where γ is a tunable parameter (Feng et al., 2012; Frey and Dueck, 2007), equal to 1 in the
present work.

p0150 The definition of exemplars relies on the iterative evaluation of two values between
each RP pair:

•u0040 Responsibility resp(sn1 , sn2): It reflects the accumulated evidence for how well-suited
RPn2 is to serve as the exemplar for RPn1 , taking into account other potential
exemplars for RPn1 .

•u0045 Availability avail(sn1 , sn2): It reflects the accumulated evidence for how appropriate it
would be for RPn1 to choose RPn2 as its exemplar, taking into account the support from
other RPs that RPn2 should be an exemplar.

p0155 These values are updated according to the following equations:

resp(sn1 , sn2) = simCL(sn1 , sn2) − max
n3

{
avail(sn1 , sn3) + simCL(sn1 , sn3)

}
, (11)

avail(sn1 , sn2) = min
{

0, resp(sn2 , sn2) +
∑

n3

max{0, resp(sn3 , sn2)}
}

, (12)

∀n1, n2, n3 ∈ {1, 2, . . . , N }, n1 '= n2, n3 '= n2 in Eq. (11), n3 '= n1, n2 in Eq. (12).
p0160 In order to facilitate convergence of the iterative procedure and avoid ringing oscil-

lations, a damping factor DF ∈ [0.5, 1) is typically introduced leading to the following
expressions for the new values of responsibility and availability:

respnew(sn1 , sn2) = DF · respold(sn1 , sn2) + (1 − DF) · resp′
new(sn1 , sn2),

availnew(sn1 , sn2) = DF · availold(sn1 , sn2) + (1 − DF) · avail′new(sn1 , sn2),
(13)

∀n1, n2 ∈ {1, 2, . . . , N }, n1 '= n2, with resp′
new(sn1 , sn2) and avail′new(sn1 , sn2) evaluated by

using Eqs. (11), (12), respectively. DF = 0.6 is generally adopted, and thus also used in the
present work.

p0165 Two main issues are identified in the application of Affinity Propagation:

•u0050 Degeneracies: Degeneracies can arise if, for example, the similarity metric is
commutative and two elements (RPs) are isolated from all the others. In this case
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oscillations in deciding which of the two elements should be the exemplar might
appear. The solution proposed in Frey and Dueck (2007), and also adopted in the
present work, is to add a small amount of random noise to similarities values to avoid
such deadlock situations.

•u0055 Outliers: When applied to RP clustering, the algorithm might occasionally lead to an
RP belonging to a cluster, but being physically far away from the cluster exemplar. In
Feng et al. (2012), taking advantage of the knowledge of each RP position, each outlier
is forced to join the cluster characterized by the exemplar at minimum distance from
the outlier itself. This solution is also adopted in the present work.

3.2s0055 Offline Phase

p0170 Affinity Propagation is used for grouping the RPs collected in the offline phase. Given a
set of L Wi-Fi APs that can be detected in A (differently from the assumption given in
Section 2.2, position of APs may be unknown and it is not required for the application of the
present low-complexity online phase strategy), initial measurements in a set of N RPs are
collected, so that an L × 1 RSS fingerprint sn is associated with the nth RP (n = 1, 2, . . . , N ).

p0175 After the RSS collection, Affinity Propagation clustering takes place, and the RPs are
divided into Nc < N clusters. The definition of similarity, used during the iterative
process, may be inherited from Frey and Dueck (2007); in this case, given a pair of RPs,
simCL(sn1 , sn2) is as follows:

simCL(sn1 , sn2) = −[D2(sn1 , sn2)]2 ∀n1, n2 ∈ {1, 2, . . . , N }, n1 '= n2, (14)

where D2(sn1 , sn2) expresses the Euclidean distance between two RP fingerprints. In order
to use the Affinity Propagation algorithm in its traditional settings, this definition is also
adopted in this work. Detailed analysis on the impact of using different definitions can be
found in Caso et al. (2015a).

3.3s0060 Online Phase

p0180 Once the offline phase is complete, the position estimate is obtained through coarse and
fine localization steps. In coarse localization, Nc,i ≤ Nc clusters that best match the si
online reading are selected, through the computation of Nc similarity values simC

nc,i =
simC(snc , si) (with nc = 1, 2, . . . , Nc) between the online reading and a fingerprint selected
as the ncth cluster’s representative, denoted as snc . In the present work, snc is a synthetic
fingerprint, generated by averaging the fingerprints of the RPs within a cluster. The
selection of the clusters is performed by comparing each simC

nc,i with a threshold α, defined
as follows (Feng et al., 2012):

α = α1 · max
e∈E

{
simC(si , e)

}
+ α2 · min

e∈E

{
simC(si , e)

}
. (15)

Clusters with similarity values above α are selected. In Eq. (15), E denotes the set of cluster
fingerprints, and α1+α2 = 1. The values of α1 and α2 allow to adjust the number of selected
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clusters: as an example, the smaller the number of desired selected clusters, the higher
should be the value of α1 (and conversely, the lower the value of α2). α1 = 0.95 and α2 =
0.05 are the values adopted in the present work.

p0185 Denoting as Ni the total number of RPs within the selected Nc,i clusters, k out of Ni RPs
are then selected during the fine localization, by computing Ni similarity values simF

n,i =
simF(sni , si) (with ni = 1, 2, . . . , Ni) between the online reading and the RP fingerprints.
Similarly to Section 2.3, final position estimate is then obtained via WkNN, so that:

p̂i =
∑k

n=1

(
simF

n,i

)
pn

∑k
n=1 simF

n,i

. (16)

It is worth noting that simC
nc,i and simF

n,i are properly defined similarity metrics, and
superscripts C and F indicate that such similarities are evaluated during the coarse and
fine localization, respectively. Similarly to the discussion in Section 2.3, several definitions
may be adopted. In this work, the inverse Euclidean distance is considered at both steps,
so that, overall, the proposed Affinity Propagation two-step algorithm adopts the similarity
definition of Eq. (14) for RP clustering (simCL

n1,n2
), while the one of Eq. (6) for coarse and fine

localization (simC
nc,i and simF

n,i), respectively.
p0190 Detailed analysis on the impact of using different metric combinations at different

steps can be found in Caso et al. (2015a).
p0195 As regards parameter k in the fine localization WkNN, a dynamic k selection scheme

is used, in which the value of k is adjusted at each positioning request, as also proposed
in Shin et al. (2012), Marcus et al. (2013), and Caso et al. (2015b). In general, this scheme
relies on the definition of a threshold λ taking values in the same domain of the similarity
metric, and on the selection of the RPs that show a value of the metric above the threshold.
In this case, given the ith positioning request, λ is evaluated as a function of the average on
the RPs similarity values simF

i,n, that is:

λi

(
simF

n,i

)
= c · sim

F
n,i = c ·

∑N
n=1 simF

n,i
N

, (17)

where c is a tuning parameter, ranging from 0.1 to 2 in the present work.

3.4s0065 Experimental Setting and Performance Indicators

p0200 Experimental analysis of the proposed low-complexity strategy was conducted in the
testbed implemented at the DIET of Sapienza University of Rome, described in Section 2.4.

p0205 In this case N1 = 65 and N2 = 69 RPs were collected, in a grid fashion, at the first and
second floors, respectively, for a total number of N = 134 RPs. For each RP, RSS values
received from all detected APs, were collected, by averaging q = 5 measurements. Once
the offline stage was completed, the total number of detected APs was L = 133, including
physical and virtual APs as well as temporary and mobile connection points. In particular
L also contained L1 = 6 and L2 = 7 testbed-dedicated Wi-Fi APs at DIET first and second
floors, as described in Section 2.4. Fingerprints were also collected in a set of N t = 70 TPs,
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randomly distributed at both floors. TPs were used as ground truth, in order to test the
positioning accuracy of the proposed scheme. All measurements were carried out during
weekdays, using an Android Samsung Tablet held on by a human surveyor.

Two different analyses were carried out in order to demonstrate the advantage of using
the proposed low-complexity strategy:

•u0060 Analysis I : Effect of adopting the proposed two-step scheme on the achievable
positioning accuracy.

•u0065 Analysis II : Effect of adopting the proposed two-step scheme on the complexity of the
online phase, in terms of average number of operations required for obtaining a
position estimate.

As regards Analysis I, positioning accuracy of two-step versus flat algorithms was
evaluated as a function of the threshold parameter c defined in Eq. (17). The flat algorithm
corresponds to a traditional WkNN scheme, with no RP clustering, and thus no coarse
localization. Only fine localization is used, by comparing the online fingerprint with each
RP fingerprint. The analysis was carried out by computing the 3D positioning error εi(c)

for each TP i (i = 1, 2, . . . , N t), as follows:

εi(c) =
√

(xi − x̂i)
2 + (yi − ŷi)

2 + (zi − ẑi)
2, (18)

where (xi , yi , zi) = pi and (x̂i , ŷi , ẑi) = p̂i are the actual and the estimated position of
the ith target device in the coordinate system including DIET first and second floors,
respectively. CDF of positioning error ε(c), that is Fε(c)(εi(c)) = Pr{ε(c) ≤ εi(c)}, and the

average positioning error ε̄(c) =
∑N t

i=1 εi(c)

N t were also evaluated as a function of c.
p0210 Regarding the computational complexity, the selected performance indicator was the

number of similarity values Nsim to be computed for obtaining a position estimate. In the
case of the two-step algorithm, Nsim for the generic ith online reading can be expressed as
follows:

Nsim = Nc + Ni , (19)

where Nc is the number of RP clusters and Ni is the number of RPs passing the coarse
localization. Noting that in case of the flat algorithm Nsim = N for each positioning
request, one can observe that, on average, the adoption of the two-step algorithm will lead
to a reduction of computational complexity if N sim = Nc + N i < N , where N sim is the
average number of similarity computations, depending in turn on the average number of

selected RPs N i =
∑N t

i=1 Ni
N t .

3.5s0070 Results and Discussion

p0215 Before discussing the results of the analysis described in Section 3.4, a brief mention to the
results of the RP clustering is reported. By adopting Affinity Propagation on 100 iterations,
with simCL(sn1 , sn2) as in Eq. (14), and tuning parameters as reported in Section 3.1, a total
number of 13 clusters were obtained in the area of interest, 6 on the first floor, and 7 on
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the second one, respectively. Fig. 3 reports the clusters obtained at DIET first floor, with
corresponding exemplars. An average of 10 RPs is included in each cluster, with maximum
cluster amount of 15 and minimum of 5 RPs.

Two-step and flat algorithms were then compared in terms of positioning accuracy.
Fig. 4 shows the average positioning error ε̄(c) for both schemes, as a function of the
threshold parameter c, adopted in fine localization WkNN (in case of two-step, cluster
selection in the coarse localization was performed by using the threshold α of Eq. 15).
Results show that the two-step algorithm always leads to comparable or better results than

FIG. 3f0020 RP clustering at DIET first floor (areas represented in different colors indicate different clusters; larger dots
indicate exemplars).

FIG. 4f0025 Flat vs. two-step: 3D average positioning error ε̄ as a function of the threshold parameter c.
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Flat Two-step

FIG. 5f0030 Flat vs. two-step: Average number of similarity values Nsim to be computed for obtaining a position estimate.

the flat algorithm. Performance improvement is particularly significant when the adopted
value of c leads to thresholds, that allow a large number of RPs to be selected. Under
these conditions, the RP space reduction provided by two-step schemes leads to significant
reduction in ε̄, and in turn improved positioning accuracy.

Fig. 5 shows the average number of similarity values Nsim to be computed for obtaining
a position estimate, and confirms the main expected advantage of the use of two-step
algorithms, that is the reduction of online complexity. While, in fact, the number of
computed similarity values is always equal to N for the flat algorithm, a significantly lower
average value, of about 27, is obtained for the two-step scheme.

4s0075 Conclusion and Future Work
p0220 In this work, a theoretical and experimental analysis of Wi-Fi RSS fingerprinting IPSs was

presented, focusing on the trade-off between performance and complexity of offline and
online fingerprinting phases. Two low-complexity system implementation strategies were
proposed and analyzed in the experimental testbed at the DIET of Sapienza University
of Rome.

p0225 Considering the offline phase, in order to limit the efforts related to the RSS collection,
the use of the MWMF indoor propagation model was proposed for the generation of

Conesa, 978-0-12-813189-3
To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier and
typesetter SPi. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

These proofs may contain colour figures. Those figures may print black and white in the final printed book if a colour print product has not been planned. The colour
figures will appear in colour in all electronic versions of this book.



“Driver” — 2018/6/6 — 8:50 — page 152 — #17

152 GEOGRAPHICAL AND FINGERPRINTING DATA

B978-0-12-813189-3.00007-1, 00007

virtual fingerprints. The MWMF accuracy in predicting RSS values in the area of interest
and the impact of using such values in the online phase were analyzed. Experimental
results showed that a significant reduction of measurement collection is possible, since
positioning accuracy is preserved thanks to the use of virtual RPs.

p0230 As regards the online phase, an Affinity Propagation two-step WkNN algorithm was
analyzed. Experimental results showed a significant decrease of required operations for
obtaining a position estimate, with a preserved or even improved positioning accuracy,
when the two-step algorithm was compared with a traditional flat scheme.

Moving from this work, several research lines can be identified. The joint application
of the proposed solutions is under investigation, and is being tested in different environ-
ments, in order to generalize the obtained results. Moreover, the analysis may be extended
to different positioning approaches, such as continuous virtual fingerprinting in the offline
phase, and probabilistic estimation in the online one. Finally, considering recent research
trends, the definition of low-complexity strategies for hybrid IPSs, that exploit different
wireless technologies in order to provide accurate localization, is expected be extremely
important.
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Abstract:
Received signal strength (RSS) fingerprinting is a common solution for the implementation of Wi-Fi indoor positioning systems
(IPSs). The trade-off between accuracy and complexity of this approach mainly depends on (1) a careful planning of the offline
phase, during which RSS values from Wi-Fi access points are collected at predefined reference points, and (2) an optimized
definition of the algorithm used in the online phase, during which position is estimated.

This chapter analyzes and discusses the above trade-off, and identifies two low-complexity strategies for both phases.
As regard the offline phase, RSS prediction, via multiwall multifloor indoor propagation model, is proposed, while an Affinity
Propagation two-step algorithm is tested in the online phase. Experimental results show the feasibility of the proposed schemes,
and how both strategies lead to a simpler system implementation, with respect to traditional schemes, while preserving
positioning accuracy.

Keywords: Wi-Fi RSS indoor positioning, Indoor propagation modeling, Multiwall multifloor model, Affinity propagation
clustering, Weighted k-nearest neighbors, Low-complexity schemes

Conesa, 978-0-12-813189-3
To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier and
typesetter SPi. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

These proofs may contain colour figures. Those figures may print black and white in the final printed book if a colour print product has not been planned. The colour
figures will appear in colour in all electronic versions of this book.


	Online Strategies for Wi-Fi Fingerprinting Indoor Positioning Systems
	Introduction
	Low-Complexity Strategy for Offline Phase
	RSS Prediction Via MWMF Model
	Offline Phase
	Online Phase
	Experimental Setting and Performance Indicators
	Results and Discussions

	Low-Complexity Strategy for Online Phase
	RP Clustering Via Affinity Propagation
	Offline Phase
	Online Phase
	Experimental Setting and Performance Indicators
	Results and Discussion

	Conclusion and Future Work
	References
	References


