GLRT for Cooperative Spectrum Sensing: Threshold Setting in Presence of Uncalibrated Receivers

Andrea Mariani, Andrea Giorgetti, and Marco Chiani

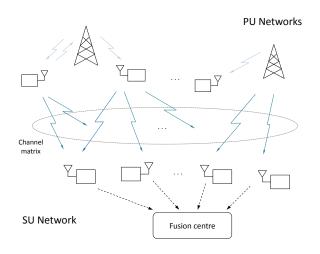
University of Bologna, Italy
DEI - Department of Electrical, Electronic,
and Information Engineering "Guglielmo Marconi"
Cesena Campus

4th Int. Workshop of COST Action IC0902 Rome, Italy October 9–11, 2013

Outline

- Study of GLRT in presence of uncalibrated receivers (SUs with different noise power)
- Statistical description of the test
- Approximated expressions for setting the decision threshold (Neyman-Pearson approach)

Cooperative sensing scenario



System model

Given $n_{\rm R}$ cooperative SUs and $n_{\rm T}$ PUs the output of the receiving antennas at the i-th time instant is

$$\mathbf{y}_i = \mathbf{H} \, \mathbf{x}_i + \mathbf{n}_i$$

where

 $\mathbf{n}_i \in \mathbb{C}^{n_{\mathrm{R}}}$ AWGN vector

 $\mathbf{x}_i \in \mathbb{C}^{n_{\mathrm{T}}}$ PU transmitted symbol vector; $\mathbf{x}_i \sim \mathcal{CN}(\mathbf{0}, \mathbf{R}_{\mathrm{x}})$

 $\mathbf{H} \in \mathcal{M}_{n_{\mathrm{R}} imes n_{\mathrm{T}}}(\mathbb{C})$ channel gain matrix

Observation matrix from $n_{\rm S}$ snapshots

$$\mathbf{Y}=\left(\mathbf{y}_{1}|\cdots|\mathbf{y}_{n_{\mathrm{S}}}\right).$$

GLRT derivation

Under the \mathcal{H}_j hypothesis, with j=0,1, the likelihood function of \mathbf{Y} is

$$\mathcal{L}(\mathbf{Y}|\mathbf{\Sigma}_{j}) = \frac{1}{\pi^{n_{\mathrm{R}}n_{\mathrm{S}}} \left|\mathbf{\Sigma}_{j}\right|^{n_{\mathrm{S}}}} \exp\left(-n_{\mathrm{S}} \operatorname{tr}\left\{\mathbf{\Sigma}_{j}^{-1}\mathbf{S}\right\}\right)$$

where the sample covariance matrix (SCM) is defined as $\mathbf{S} = \frac{1}{n_{\rm S}} \mathbf{Y} \mathbf{Y}^{\rm H}$. The GLR to detect the hypothesis \mathcal{H}_0 is

$$\mathsf{T} = \frac{\left|\widehat{\boldsymbol{\Sigma}}_{1}\right|}{\left|\widehat{\boldsymbol{\Sigma}}_{0}\right|} \begin{array}{c} \mathcal{H}_{0} \\ \geqslant \\ \mathcal{H}_{1} \end{array} \boldsymbol{\xi}$$

where $0 \le \xi \le 1$. $\widehat{\Sigma}_1$ and $\widehat{\Sigma}_0$ are the ML estimates of Σ_0 and Σ_1 , respectively.

Sphericity Test

Assuming

 \mathcal{H}_0 : $\mathbf{\Sigma}_0 = \mathbb{E}\left\{\mathbf{y}_i\mathbf{y}_i^{\mathrm{H}}|\mathcal{H}_0\right\} = \sigma^2\,\mathbf{I}_{n_{\mathrm{R}}}$, i.e. the SU have the same noise power \mathcal{H}_1 : No assumptions on $\mathbf{\Sigma}_1 = \mathbb{E}\left\{\mathbf{y}_i\mathbf{y}_i^{\mathrm{H}}|\mathcal{H}_1\right\}$

The GLRT is

$$\mathsf{T}^{(\mathsf{sph})} = rac{|\mathsf{S}|}{\left(\mathrm{tr}\{\mathsf{S}\}/n_{\mathrm{R}}
ight)^{n_{\mathrm{R}}}} egin{array}{l} \mathcal{H}_0 \ \mathcal{H}_1 \end{array} \xi$$

where **S** is the sample covariance matrix (SCM) $\mathbf{S} = \frac{1}{n_S} \mathbf{Y} \mathbf{Y}^H$.

Test of Independence

Assuming

 \mathcal{H}_0 : Σ_0 is diagonal; "unbalanced receivers" case

 \mathcal{H}_1 : No assumptions on Σ_1

In this case the GLRT is

$$\mathsf{T}^{(\mathsf{ind})} = \frac{|\mathbf{S}|}{\prod_{k=1}^{n_{\mathrm{R}}} \mathsf{s}_{k,k}} \stackrel{\mathcal{H}_0}{\gtrless} \xi$$

where $s_{i,j}$ is the (i,j) element of **S**.

Detection with uncalibrated receivers

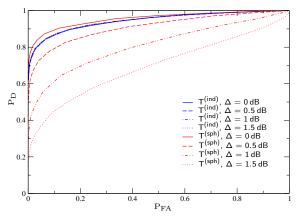


Figure: ROC comparison between T^(ind) and T^(sph) in presence of 4 SUs and a single PU. We assume that the noise power levels in dB at the SU receivers equal $(\sigma_{\rm ref}^2, \sigma_{\rm ref}^2 + \Delta, \sigma_{\rm ref}^2 - \Delta, \sigma_{\rm ref}^2)$. The reference level $\sigma_{\rm ref}^2$ correspond to SNR = $-10\,{\rm dB}$. $\sigma_{\rm ref} = 500$.

Threshold setting

To design the threshold for both tests we need to know the distribution of $T^{(ind)}$ and $T^{(sph)}$ under \mathcal{H}_0 .

Unfortunately, such statistical distributions are:

- known in closed-form for T^(ind), but expressed as the Meijer G-function multiplied by a normalizing constant¹
- not known in closed-form for T^(sph), but expressed as an infinite sum²

In both cases, such expressions cannot be easily inverted for threshold setting!

Hence, we propose a **moment matching approach**.

¹M. D. Springer and W. E. Thompson, "The distribution of products of beta, gamma and gaussian random variables," SIAM Journal on Applied Mathematics, vol. 18, no. 4, pp. 712-737, Jun. 1970.

²B. N. Nagarsenker and M. M. Das, "Exact distibution of sphericity criterion in the complex case and its percentage points," Communications in statistics, vol. 4, no. 4, pp. 363-374, 1975.

Moments of T^(ind)

Theorem (On the distribution of the independence test)

Consider the test statistic $T^{(ind)} = |\mathbf{S}| / \prod_{k=1}^{n_R} s_{k,k}$, where $\mathbf{S} = \{s_{i,j}\}$ is the SCM of a n_R -variate complex Gaussian population with zero mean and diagonal covariance matrix. Then $T^{(ind)}$ can be expressed as

$$T^{(ind)} = T_{n_R} T_{n_R-1} \cdots T_2 = \prod_{k=2}^{n_R} T_k.$$

where $\{T_k\}_{k=2,...,n_R}$ are independent beta distributed r.v.s with p.d.f.

$$\begin{cases} \frac{1}{B(n_S-k+1,k-1)} t^{n_S-k} (1-t)^{k-2}, & 0 \le t \le 1\\ 0, & otherwise. \end{cases}$$

Moments under \mathcal{H}_0

Moments of T(ind)

Based on the previous theorem the moments of T^(ind) can be derived as

$$\mathsf{m}_p^{(\mathsf{ind})} = \prod_{k=2}^{n_\mathrm{R}} \mathbb{E}\left\{\mathsf{T}_k^p\right\}$$

$$\mathsf{m}_p^{(\mathsf{ind})} = \left(\frac{\Gamma(n_\mathrm{S})}{\Gamma(n_\mathrm{S}+p)}\right)^{n_\mathrm{R}-1} \prod_{k=1}^{n_\mathrm{R}-1} \frac{\Gamma(n_\mathrm{S}-k+p)}{\Gamma(n_\mathrm{S}-k)}.$$

Moments of T^(sph) are given by [Nagarsenker and Das, 1975]

$$\mathsf{m}_p^{(\mathsf{sph})} = \frac{n_\mathrm{R}^{n_\mathrm{R}p} \Gamma(n_\mathrm{S} n_\mathrm{R})}{\Gamma(n_\mathrm{S} n_\mathrm{R} + n_\mathrm{R}p)} \prod_{i=1}^{n_\mathrm{R}} \frac{\Gamma(n_\mathrm{S} - i + 1 + p)}{\Gamma(n_\mathrm{S} - i + 1)}.$$

MM-based approximation (1)

We approximate T^(ind) and T^(sph) to beta distributed r.v.s.

Thus the approximated p.d.f. is given by

$$f_{\mathsf{T}}\left(t
ight)\simeq egin{cases} rac{1}{B\left(\mathsf{a},\mathsf{b}
ight)}\,t^{\mathsf{a}-1}\,\left(1-t
ight)^{\mathsf{b}-1}\,, & 0\leq t\leq 1\ 0, & ext{otherwise} \end{cases}$$

where $B(a,b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx$ is the beta function with parameters a and b:

$$\begin{split} a &= \frac{m_1 \, \left(m_2 - m_1\right)}{m_1^2 - m_2}, \\ b &= \frac{\left(1 - m_1\right) \left(m_2 - m_1\right)}{m_1^2 - m_2}. \end{split}$$

MM-based approximation (2)

Thus $P_{FA} \triangleq \Pr\{T < \xi | \mathcal{H}_0\}$ can be expressed as

$$\mathrm{P_{FA}} \simeq \int_0^{\xi} rac{1}{B(\mathsf{a},\mathsf{b})} \, t^{\mathsf{a}-1} \, \left(1-t
ight)^{\mathsf{b}-1} dt = \widetilde{B}(\mathsf{a},\mathsf{b},\xi)$$

where $\widetilde{B}(a,b,\xi) = \frac{1}{B(a,b)} \int_0^{\xi} x^{a-1} (1-x)^{b-1} dx$ is the regularized beta function.

The decision threshold can be easily calculated as

$$\xi = \widetilde{B}^{-1} \Big(\mathsf{a}, \mathsf{b}, \mathbf{P^{DES}_{FA}} \Big)$$
 .

Note that $\widetilde{B}^{-1}(\cdot,\cdot,\cdot)$ can be easily computed using standard mathematical software.

MM-based approximation - $T^{(ind)}$

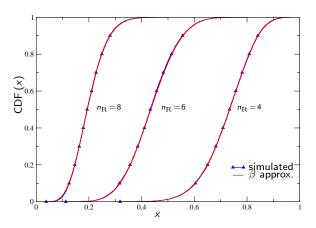


Figure: Comparison between the CDF based on the moment matching strategy and numerically simulated curve for $T^{(ind)}$ under \mathcal{H}_0 with $n_S=20$.

MM-based approximation - $T^{(sph)}$

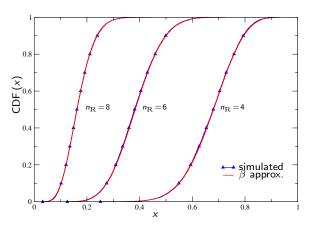


Figure: Comparison between the CDF based on the moment matching strategy and numerically simulated curve for $T^{(sph)}$ under \mathcal{H}_0 with $n_S=20$.

Chi squared approximation comparison

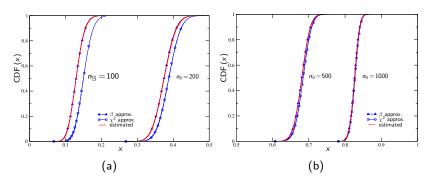


Figure: Comparison among the CDF and the empirically estimated curve for $T^{(ind)}$ under \mathcal{H}_0 . $n_{\rm R}=20$.

Conclusions

We studied the generalized likelihood ratio test (GLRT) for cooperative spectrum sensing

- The most proper assumption is that every SU experience a different noise power level (noise unbalances)
- $T^{(ind)}$ is robust to noise unbalances $\Rightarrow T^{(ind)}$ should be adopted in place of $T^{(sph)}$
- Both tests can be very well approximated as beta r.v.s. (under null hyp.)
- We provided easy-to-use expressions for setting the decision threshold under the Neyman-Pearson framework.

Thank you!

andrea.giorgetti@unibo.it

A. Mariani, A. Giorgetti, and M. Chiani, "Test of Independence for Cooperative Spectrum Sensing with Uncalibrated Receivers," in *Proc. IEEE Global Commun. Conf.* (GLOBECOM 2012), Anaheim, CA, USA, Dec. 2012.