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Outline

Study of GLRT in presence of uncalibrated receivers
(SUs with different noise power)

Statistical description of the test

Approximated expressions for setting the decision
threshold (Neyman-Pearson approach)
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Cooperative sensing scenario
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System model

Given nR cooperative SUs and nT PUs the output of the receiving
antennas at the i-th time instant is

yi = Hxi + ni

where
ni ∈ CnR AWGN vector
xi ∈ CnT PU transmitted symbol vector; xi ∼ CN (0,Rx)
H ∈ MnR×nT(C) channel gain matrix

Observation matrix from nS snapshots

Y = (y1| · · · |ynS) .
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GLRT derivation

Under the Hj hypothesis, with j = 0, 1, the likelihood function of Y is

L(Y|Σj) =
1

πnRnS |Σj |
nS exp

(
−nS tr

{
Σj

−1S
})

where the sample covariance matrix (SCM) is defined as S = 1
nS
YYH.

The GLR to detect the hypothesis H0 is

T =

∣∣∣Σ̂1

∣∣∣
∣∣∣Σ̂0

∣∣∣

H0

≷
H1

ξ

where 0 ≤ ξ ≤ 1. Σ̂1 and Σ̂0 are the ML estimates of Σ0 and Σ1,

respectively.
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Sphericity Test

Assuming
H0: Σ0 = E

{
yiyi

H|H0

}
= σ2 InR , i.e. the SU have the same noise power

H1: No assumptions on Σ1 = E
{
yiyi

H|H1

}

The GLRT is

T(sph) =
|S|

(tr{S}/nR)
nR

H0

≷
H1

ξ

where S is the sample covariance matrix (SCM) S = 1
nS
YYH.
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Test of Independence

Assuming
H0: Σ0 is diagonal; ”unbalanced receivers” case
H1: No assumptions on Σ1

In this case the GLRT is

T(ind) =
|S|∏nR

k=1 sk,k

H0

≷
H1

ξ

where si ,j is the (i , j) element of S.
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Detection with uncalibrated receivers
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Figure: ROC comparison between T(ind) and T(sph) in presence of 4 SUs and a single
PU. We assume that the noise power levels in dB at the SU receivers equal
(

σ2
ref, σ

2
ref +∆, σ2

ref −∆, σ2
ref

)

. The reference level σ2
ref correspond to SNR = −10 dB.

nS = 500.
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Threshold setting

To design the threshold for both tests we need to know the distribution
of T(ind) and T(sph) under H0.

Unfortunately, such statistical distributions are:

known in closed-form for T(ind), but expressed as the Meijer
G-function multiplied by a normalizing constant1

not known in closed-form for T(sph), but expressed as an infinite
sum2

In both cases, such expressions cannot be easily inverted for threshold
setting!
Hence, we propose a moment matching approach.

1
M. D. Springer and W. E. Thompson, “The distribution of products of beta, gamma and gaussian random

variables,” SIAM Journal on Applied Mathematics, vol. 18, no. 4, pp. 712-737, Jun. 1970.
2
B. N. Nagarsenker and M. M. Das, “Exact distibution of sphericity criterion in the complex case and its

percentage points,” Communications in statistics, vol. 4, no. 4, pp. 363-374, 1975.

Andrea Mariani, Andrea Giorgetti, and Marco Chiani GLRT for Cooperative Spectrum Sensing 9 / 18



Moments of T(ind)

Theorem (On the distribution of the independence test)

Consider the test statistic T(ind) = |S| /
∏nR

k=1 sk,k , where S = {si ,j} is the

SCM of a nR-variate complex Gaussian population with zero mean and

diagonal covariance matrix. Then T(ind) can be expressed as

T(ind) = TnRTnR−1 · · ·T2 =

nR∏

k=2

Tk .

where {Tk}k=2,...,nR are independent beta distributed r.v.s with p.d.f.{
1

B(nS−k+1,k−1) t
nS−k (1− t)k−2, 0 ≤ t ≤ 1

0, otherwise.
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Moments under H0

Moments of T(ind)

Based on the previous theorem the moments of T(ind) can be derived as

m
(ind)
p =

nR
∏

k=2

E
{

Tp

k

}

m
(ind)
p =

(

Γ(nS)

Γ(nS + p)

)nR−1 nR−1
∏

k=1

Γ(nS − k + p)

Γ(nS − k)
.

Moments of T(sph) are given by [Nagarsenker and Das, 1975]

m
(sph)
p =

n
nRp

R
Γ(nSnR)

Γ(nSnR + nRp)

nR
∏

i=1

Γ(nS − i + 1 + p)

Γ(nS − i + 1)
.
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MM-based approximation (1)

We approximate T(ind) and T(sph) to beta distributed r.v.s.

Thus the approximated p.d.f. is given by

fT (t) ≃

{
1

B(a,b) t
a−1 (1− t)b−1 , 0 ≤ t ≤ 1

0, otherwise

where B(a, b) =
∫ 1

0
xa−1 (1− x)b−1

dx is the beta function with
parameters a and b:

a =
m1 (m2 −m1)

m2
1 −m2

,

b =
(1−m1) (m2 −m1)

m2
1 −m2

.
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MM-based approximation (2)

Thus PFA , Pr{T< ξ|H0} can be expressed as

PFA ≃

∫ ξ

0

1

B(a, b)
ta−1 (1− t)

b−1
dt = B̃(a, b, ξ)

where B̃(a, b, ξ) = 1
B(a,b)

∫ ξ

0 xa−1 (1− x)
b−1

dx is the regularized beta

function.

The decision threshold can be easily calculated as

ξ = B̃−1
(
a, b,PDES

FA

)
.

Note that B̃−1(·, ·, ·) can be easily computed using standard

mathematical software.
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MM-based approximation - T(ind)
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Figure: Comparison between the CDF based on the moment matching strategy
and numerically simulated curve for T(ind) under H0 with nS = 20.
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MM-based approximation - T(sph)
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Figure: Comparison between the CDF based on the moment matching strategy
and numerically simulated curve for T(sph) under H0 with nS = 20.
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Chi squared approximation comparison
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Figure: Comparison among the CDF and the empirically estimated curve
for T(ind) under H0. nR = 20.
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Conclusions

We studied the generalized likelihood ratio test (GLRT) for
cooperative spectrum sensing

The most proper assumption is that every SU experience a
different noise power level (noise unbalances)

T(ind) is robust to noise unbalances ⇒ T(ind) should be
adopted in place of T(sph)

Both tests can be very well approximated as beta r.v.s. (under
null hyp.)

We provided easy-to-use expressions for setting the decision
threshold under the Neyman-Pearson framework.

Andrea Mariani, Andrea Giorgetti, and Marco Chiani GLRT for Cooperative Spectrum Sensing 17 / 18



Thank you!
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