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In order to identify unused portions of spectrum and monitor the activity of primary users (PUs), CR 
devices must implement spectrum sensing algorithms with highly reliable performance [1]. Many 
spectrum sensing techniques have been proposed in literature, starting from the traditional 
algorithms such as the energy detector (ED) and feature-based detectors. These algorithms can be 
implemented by a single node or by multiple secondary users (SUs) that cooperate sharing their 
sensing information. However it has been shown that these techniques present some limitations. 
Indeed, the adoption of the ED in practical scenarios requires the implementation of a proper noise 
power estimation strategy, and feature detectors can suffer synchronization errors and frequency 
offsets in realistic environments [2]. Recently, algorithms that exploit the properties of the 
covariance matrix of the observed signals, often called eigenvalue-based detectors, have attracted a 
lot of attention providing good performance results without requiring the knowledge of the noise 
power nor any prior information on the PU signals. These algorithms can be adopted if some kind of 
diversity is present in the SU system, which typically means that multiple antenna nodes are used or 
that SUs exploit cooperation. Considering a cooperative SUs network, when there are no PUs, the 
different nodes receive uncorrelated noise observations, which means that the covariance matrix is 
diagonal. Otherwise, when primary communications are active, the received signals present a certain 
degree of correlation and we have a non-diagonal covariance matrix. Therefore a proper detection 
strategy can be based on the observation of the sample covariance matrix (SCM), denoted with S, in 
order to discriminate between correlated received signal and white noise, i.e. to distinguish if PUs 
are present or not.  
In cooperative sensing networks nodes are often assumed to have the same noise power level. In this 
case the generalized likelihood ratio test (GLRT) is the so called sphericity test 
 

B. Chi-squared approximation

Alternative approximated distributions have been studied for
the GLR in (6). In particular, [14] shows that asymptotically
the CDF of the GLR can be expressed as a linear combina-
tion of gamma functions. However these expressions are not
practical for threshold setting because they do not have an
analytical inverse form.

A more common approximation is the asymptotical chi-
squared distribution [15]

−2nS logT ∼ χ2
∆dof

(0) (13)

where ∆dof is the difference between the degrees of freedom
(d.o.f.) of T in the hypothesis H1 and in the hypothesis H0.
From (13) we obtain the approximated PFA

PFA ≈ Γ̃(∆dof/2,−nS log ξ) (14)

where Γ̃(n, x) = 1
Γ(n)

∫∞

x xn−1 exp(−x)dx is the regularized
gamma function. Given the target probability of false alarm
PDESFA , the threshold level can be set as

ξ = exp

(
− 1

nS
Γ̃−1

(
∆dof/2, P

DES
FA

))
. (15)

IV. INDEPENDENCE TEST

In this section we characterize the previous analysis for
the independence test, that is the GLR when each node
experiences a different noise power level. In this case, under
H0, Σ0 is diagonal and its ML estimate is Σ̂0 = diag{S}.
Under H1 we have Σ̂1 = S. Then we can express the GLRT
as

T(ind) =
|S|∏nR

k=1 sk,k

H0
≷
H1

ξ (16)

where si,j is the (i, j) element of S. Note that T(ind) equals the
determinant of the sample correlation matrix given by C =
WSW, where the matrix W is diagonal with diag{W} =(
1/

√
s1,1, . . . , 1/

√
snR,nR

)
[11], [14].

In order to study the distribution of the independence test
it is useful to decompose T(ind) using a proper factorization.
Assuming that Sk is the k-th order upper left principal minor
of S, we define

Tk "
|Sk|

|Sk−1| · sk,k
. (17)

Then from (16) we can write

T(ind) = TnRTnR−1 · · ·T2 =
nR∏

k=2

Tk. (18)

Using the following theorem it is possible to demonstrate that
under H0 the factors Tk are independent beta distributed r.v.s.

Theorem 1 (On the distribution of the independence test):

Consider the test statistic defined in (16), where S is the
SCM of a nR-variate complex Gaussian population with zero
mean and diagonal covariance matrix. Then T(ind) equals the

product of nR−1 independent beta distributed r.v.s Tk, with
k = 2, . . . , nR, with p.d.f.

{
1

B(nS−k+1,k−1) t
nS−k (1− t)k−2, 0 ≤ t ≤ 1

0, otherwise.
(19)

The proof of this theorem has been presented for real r.v.s
in [14], recalling some results on multivariate linear regression
hypothesis testing. In the appendix we provide a proof valid
for complex r.v.s (see also [16]).

The exact distribution of the product of independent beta
distributed r.v.s has been expressed in closed form as the
Meijer G-function multiplied by a normalizing constant in
[17]. However, setting the decision threshold requires the
inversion of this expression, that is analytically intractable.
Using the expressions of the moments of T(ind) we can adopt
the beta distribution described in the previous section. Thanks
to the independence of the factors Tk in (18), we can derive

the p-th moment of T(ind), m
(ind)
p , as the product of the p-th

moments of the (k − 1) r.v.s Tk. Therefore using (7) we get

m
(ind)
p =

(
Γ(nS)

Γ(nS + p)

)nR−1 nR−1∏

k=1

Γ(nS − k + p)

Γ(nS − k)
. (20)

Substituting m
(ind)
1 and m

(ind)
2 in (8) and (9) we obtain the

parameters, named a(ind) and b(ind), of the beta r.v. that
approximate T(ind). Replacing a(ind) and b(ind) in (11) and
(12) we get the corresponding approximated PFA and threshold
level.
Note that, when nR = 2, T(ind) = T2. Therefore from

Theorem 1 we obtain the exact distribution of T(ind) as
{
(nS − 1) tnS−2, 0 ≤ t ≤ 1

0, otherwise
(21)

and PFA = ξnS−1, with 0 ≤ ξ ≤ 1.

V. SPHERICITY TEST

In this section we characterize the analysis in Section II for
the sphericity test. If the SUs experience the same noise level,
σ2, under H0 we have a covariance matrix that is proportional
to the identity matrix, i.e. Σ0 = σ2 InR . In this case we have

the ML estimate Σ̂0 = σ̂2 InR , where σ̂2 = tr{S}/nR, while

under H1 we still have Σ̂1 = S. Then from (6) we get

T(sph) =
|S|

(tr{S}/nR)
nR

H0
≷
H1

ξ. (22)

The exact distribution of T(sph) is given by [18] as infinite sums
expressions that are not easily tractable for threshold setting.
Using the moments of T(sph), provided by [18] as

m
(sph)
p =

nnRp
R Γ(nSnR)

Γ(nSnR + nRp)

nR∏

i=1

Γ(nS − i+ 1 + p)

Γ(nS − i+ 1)
(23)

we can adopt the moment-matching beta distribution. The
corresponding beta parameters a(sph) and b(sph) can be obtained

inserting m
(sph)
1 and m

(sph)
2 in (8) and (9). Replacing a(sph) and

. 
(1) 

 
where nR is the number of the cooperating nodes. 
However, in general, different nodes could experience different temperatures or could even have a 
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different RF front-end. Therefore we must a more realistic assumption is to consider that the SUs 
experience different levels of noise. The GLR in this case is the independence test, defined as 
  

 
Note that even when multiple antennas are adopted, if they are not properly designed and calibrated, 
the independence test must be adopted in place of the sphericity test. 
 
In this study we address the analysis of the independence and sphericity tests, studying the threshold 
setting problem under the Neyman-Pearson framework. We propose in particular to approximate the 
tests to beta distributed random variables using a moment matching approach and prove simple and 
analytically tractable expressions easy to use for the computation of the probability of false alarm 
and for setting the decision threshold. Numerical simulations show that these approximated forms 
match very well the empirical cumulative distribution function of the tests, even with a small 
number of samples collected, outperforming the popular chi squared approximation for the GLRT. 
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