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Introduction
— &

Transmitter localization is an important aspect in commercial, public safety and
military applications of current and future wireless networks

— Numerous approaches possible

Received Signal Strength (RSS)-based localization is a viable localization solution
due to the:

— Inherent presence of the RSS extraction feature in all radio devices
— Sufficient precision for a variety of practical applications

However, there are associated challenges in the process as the operating
environment of wireless networks is very hostile + the radio environmental
information (e.g. wireless channel model parameters) and network configuration
information (sensor positions) might be unreliable or absent

This presentation analyzes the network topology ambiguity problem and
proposes novel localization algorithms that improve the transmitter localization
performance while reducing the network topology ambiguity
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General network setup
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[3 I + fI Agent position
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Single transmitter (agent) with unknown
position Iy

Set N, | N|=n of measuring sensors
(anchors) with known positions 1;. 7€ NV
The anchors measure the RSS . 7€ N of
the signal broadcasted by the transmitter

The transmitter position 17v estimated
through (unbiased) estimation using the
RSS observations

— Using appropriate path loss model*

The localization error quantified through
the covariance matrix

I Is

T
| Agent localization covariance | Ci _E|:(rf v =¥y ) (Foy ~ i) :|

* R. K. Martin, and R. Thomas, “Algorithms and bounds for estimating location, directionality, and environmental parameters of primary spectrum users, ” IEEE Transaction on

Wireless Communications 8(11), pp. 5692-5701, November 2009.
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The position information of some anchors
is obtained through previous estimation

i

Anchor position ambiguity

 The anchor position estimates are fl and
they satisfy f,_ £
— Ambiguous and often very unreliable
network topology information

 The ambiguous anchor position
information fl can cause severe
deterioration of the localization
algorithms’ performance

e New localization algorithms for scenarios
with ambiguous topologies needed

I,

3

I Agent localization covariance increases I 6
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Joint localization algorithms
— o)

 The ambiguity problem can be alleviated with localization algorithms that
jointly estimate the agent’s and the anchors’ exact positions*

¥ilmprove the transmitter localization performance
¥i{Reduce the network topology ambiguity

* The joint localization relies on the assumption that the erroneous
information about the anchor positions is obtained by some previous
estimation

¥iModeled as a random process parameterized with respect to the
exact anchor positions

e This work presents a general joint RSS-based localization framework
developed using non-Bayesian estimation formalism*

— The unknown agent’s and ambiguous anchors’ positions are regarded
as deterministic parameters - the technically correct estimation
approach for scenarios with imprecise anchor position information

* M. Angjelicinoski, D. Denkovski, V. Atanasovski, and L. Gavrilovska, “SPEAR: Source Position Estimation for Ambiguity Reduction, ” IEEE Communication Letters (submitted)



Joint localization algorithms:
Non-Bayesian formalism

Ambiguity regions Ki I

Two subsets of anchors:

Subset V, | V|=v -> anchors with certain i.e.
precisely known position (Base Stations or APs)

Subset U, |U|=u -> anchors with ambiguous
positions

The data vectoris X=(X,....X, ) e R""*
o |@ R e

1_[-’,. iel’

The unknown parameters vector is
deterministic

1 Y . T B 2+2u
H _(1]-‘\'0. nnnqliqooo)l‘il’ EIR‘_

Assumptions:

Propagation model: log-distance path loss model
in log-normal uncorrelated shadowing o (1 dB)

Bw(00n0°): 16N

0,(0)=P,, —L,—10ylog, (|| x,, —x [|/d,)

0
Anchor position estimates: i.i.d. Gaussian*

N K, ). el

Environments, ” First International Conference ADHOCNETS 2009, Ontario, CA, 2009, pp. 422-437.



Joint Maximum Likelihood 3
—‘

* | The main task of the RSS-based joint localization framework is to estimate 0 based
on the information contained in X*

 Employing Maximum Likelihood (ML) approach* results in the Joint Maximum
Likelihood (JML) localization algorithm

X n o .
0, =argmax{ln p(X:0)! = arg max I —L,, (P —0.(8)) = > (r - "K' (F -r l
JML ] i i i

0" =l

1 1 1 l
0 0 iU

where p(X;0) is the joint probability density function of the data vector X

e Whenr =r.7€N  then § = r,, and the JML becomes the Legacy ML (LML)
localization algorithm A [ " "l
0., =argmin: > (P, -05,(8)) ¢

o l,z‘=1] - J

10
*S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, Prentice-Hall, 1998.



JML performance evaluation (1/4)  Tooo-
— transmitter localization =)

Simulation parameters I/|DF:3L \ I,’||f):7‘\ [ Vo
| | Ve
Simulated area 20mX20m \ 4y Q ___ ‘\\ d\,\' /1D
\\ 7 // \\\ N _ / |
Transmit power 0dBm =7 e D L Q —
| O.i """""""" | \\ VX/
Path loss exponent 2.5 o ANy ~—-—7
9 7T TN \\\_Q,//
Reference distance Im " ID0N, A~
[ —
Transmitter position (9,9)m A— e 1@. ]
- . &t
Shadowing std. deviation 1:1:10 dB / ! 4‘ \ 1.
y ==~ )\ n-9 ” /// \\\
Number of anchors 10 —— " D2 /Dy
I .
Number of ambiguous anchors 10 (U=N) / \ Iy ——a=C
- - o TN PR o7/ IDs

Anchor ambiguity std. deviation 1:3:1 /1D > Ry \/m ."/ ‘ Nﬁ\‘?
Monte-Carlo trials (L) '\\ ’/ l} .’ ‘(D “1 \ Y //‘

»K, — N ieU 0,, =m‘g;njn{§(0_2 (B —f)‘,-(ﬂ))2 +A7E -, 2)}

[ GOAL: Compare the Root Mean Squared Error (RMSE) performance of the JML with the ]
performance of the LML in terms of the transmitter localization capabilities

L : 0,713 JML
RVSE (vyi0.A) = %Z A a2

Iy “’TX” A7y =9 . "



JML performance evaluation (2/4)
—> transmitter localization

; The RMSE gain increases as the initial anchor ;

10
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The joint agent/ambiguous
anchor localization results
in RMSE gain for the

L

meiguities

position ambiguity increases (relative to the
average network internodes distances)

— The joint localization framework suitable for

scenarios with large initial topology
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transmitter localization
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The JML performs better than the LML — reliable transmitter localization is possible in scenarios

with ambiguous anchor positions



JIML performance evaluation (3/4) T

—> anchor ambiguity reduction ‘%
—‘

GOAL: Compare the Root Mean Squared Error (RMSE) performance of the JML in
terms of reducing the initial network topology ambiguity

1 &y.
LZ gt o

7=l

R\ﬁS'E(lR',-lOZA)=\/— r.-T

‘\‘ _ N ) ' _ (
117 - [9~B'l/](2i+l):(2(j+1))« 1= _)Q 10

Initial Anchor Position

Ambiguity

T \\ / / 7 1 . RS
-/ 1D5 Ao - gt RMSE,, (t:.0.A)=JTrK,]= M2 ielU
|
\ J 7/
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JML performance evaluation (4/4)
— anchor ambiguity reduction
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=% JML (sensID:9, A=7m)
6.5 —©-JML (sensID:10, A=7m)
—¥-Initial Anchor Position Ambiguity
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The JML improves the reliability of the anchor position estimates
— reduced network topology ambiguity
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Concluding remarks
— o)

In challenging environments, the information about the sensors’ positions
might be unreliable - the problem can be alleviated using joint
localization algorithms

This work introduced general RSS-based localization framework using non-
Bayesian estimation formalism that:

— Improves the transmitter localization performances
— Reduces the sensors’ positional ambiguity

The JML is introduced as a typical representative of the proposed
framework

The JML performance evaluation proves that substantial transmitter
localization improvements and network ambiguity reduction gains can be
attained via joint localization

16
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Theoretical performance bound%
—‘

 The Cramer-Rao Lower Bound (CRLB) [1] bounds the covariance matrix of any
unbiased, non-Bayesian estimator of 0 via the inverse of the Fisher Information
Matrix (FIM)J(0)
“1(. \_ w-! -1, . y—

I'7y

4 )

-1 - ~1\~1 2p -l - ~1\~1
C; =07 (r)= (@R, + K| L +a R I (1 )R (aR, + K'Y |
P = 2:7:1 aR:R =qq ;a,.=(l(ﬁ);/(,cﬂ In10d, )™ )— q, =(cos¢ sing) Y = —(-a R,

* Objective: prove convergence of the derived bounds by investigating the

asymptotic performance of the JML

— The JML s expected to achieve the CRLB in terms of RMSE for small environmental variability and
small anchor position errors (i.e. in the small variation/error region)

L
RMSE (0. A) = %Z

. 2 o 1 . 5 RMSE:
Iy —rTXH . RMSE(r 0. A) = ZZ I, —r

J=l J= Position Error
PEB(xyy 0. 8) =TI (]2 PEB(x:0.8) ={Tr{3 ()] (LR

[1] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, Prentice-Hall, 1998.

simulation
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Bound convergence (1/3) {0002
-> transmitter localization ™)

High radio environmental

RMSE - PEB

variability region

- RMSE-PEB >0

\_

10

RMSE[m]

Small variations region

- RMSE - PEB = 0 (approaches A
zero) l/

—> The JML achieves the
\derived bound

Large initial network
ambiguity
- RMSE - PEB< 0

- Typical behavior for biased
10 estimation

- large initial ambiguities
introduce bias in the
estimation process and JML

performs better than expected
Qterms of RMSE /




Bound convergence (2/3)
— anchor localization

RMSE - PEB

10

Gnall variations region

MISE[m]

zero)

- The JML achieves the
derived bound

for large environmental

Qria bility

- RMSE - PEB = 0 (approaches

— The Bound converges even

)

Large initial network ambiguity
- RMSE - PEB< 0

- The estimation is biased and
the bound does not converge

- Notice that ID:2 is very
close to the transmitter

o /




Bound convergence (3/3) 1C0902

RMSE[m]

o [dB]

— anchor localization (avera

10

RMSE - PEB

Averaging over sensors

increases the region of
convergence of the bound and

reduces the bias.

— The bound for far anchors
converges in larger region
compared with close anchors

J
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Joint Maximum Likelihood
—_— &)

* | The main task of the RSS-based joint localization framework is to estimate 0 based
on the information contained in X [1]

 Employing Maximum Likelihood (ML) approach [1], results in the Joint Maximum
Likelihood (JML) localization algorithm

A

0,7 =arg max ‘ln p(X.0) } =arg min {—ln p(X.0 )}-
0 0
where p(X;0) is the joint probability density function of the data vector X

 Employing the path loss and the anchor position estimate distribution assumptions,
the log-likelihood function L(0|X)=Inp(X;0) results in

[ L(®]X)=In p(X:0) ———Z (P -0, Z(;_I;)TK,l(f;—r,)]

i=l

* When I, =1, /€N then 0 =r,and the JML becomes the Legacy ML (LML)
localization algorithm [

A S -owy]

=l

0;,, =argmin
0

23
[1] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, Prentice-Hall, 1998.



Performance bounds (1/2)

The Cramer-Rao Lower Bound (CRLB) [1] bounds the performance of any unbiased,
non-Bayesian estimator of 0 via the inverse of the Fisher Information Matrix (FIM)

The information inequality provides the CRLB estimation bound for 0 [1]
—1
C,=J(9)
— The information inequality bounds the covariance matrix of any unbiased estimator of deterministic
parameters with the inverse of the FIM calculated for the respective parameters

Fisher Information Matrix for the parameter vector 0
— Quantifies the information about the unknown parameter 0 vector contained in the observed data X

JO)EE J( Cln p(X.0) jT Cln p(X.0) ] B b 4 Y
. X.0 1 (A,G (A'ﬂ J »YT D+A
ci"/’l'ri ¥ = Z :7:1 aR;. R, = (l;(l;[
@’-/-/-/—/-gb-f-}---j c'/,-2 =10y(cAIn10)~"

. o T

g q, =(cos¢ sing )

.~ , . . ~1
Y=—(.aR, ). D=diagiaR. | ;. A=diag{K "}

24

[1] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, Prentice-Hall, 1998.
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Performance bounds (2/2) ,%
_ e

* The Equivalent FIM (EFIM) can be calculated as Schur’s complement of the FIM

— The positional information can be studied separately for each node in the network

~ : N
J(v"m’):T_Y(DwLA)_lYT =Z, (R Z, e ‘RKR + Z’ L o R KRKR,

l+¢ /,q, K q,

Jr)=(aR +K|-a'R¥'R, -a’R¥ T,

| o Y L PTR i eU
K Sialy Uy

iy J

* The CRLB for each network node (transmitter and sensors) is obtained by
employing the EFIM expressions in the information inequality

( )

] 2

Ci =0 () =¥ L+ 00

I'ry

)YT\I,—l]

Ci 207 () =R, +K ) L+ a’R I (1 )R (R, + K'Y l




