

#### Ss. Cyril and Methodius University in Skopje



Faculty of Electrical Engineering and Information Technologies (FEEIT)

**Institute of Telecommunications (ITK)** 

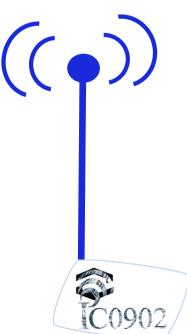
#### Joint Localization Algorithms for Network Topology Ambiguity Reduction

Marko Angjelicinoski, Daniel Denkovski, Vladimir Atanasovski and <u>Liljana Gavrilovska</u>

{markoang; danield; vladimir; liljana}@feit.ukim.edu.mk



4<sup>th</sup> COST IC0902 Workshop Rome, Italy, October 9-11, 2013





#### Outline

- Introduction
- Problem definition
- Joint Maximum Likelihood (JML)
- Concluding remarks



#### Introduction

- Transmitter localization is an important aspect in commercial, public safety and military applications of current and future wireless networks
  - Numerous approaches possible
- Received Signal Strength (RSS)-based localization is a viable localization solution due to the:
  - Inherent presence of the RSS extraction feature in all radio devices
  - Sufficient precision for a variety of practical applications
- However, there are associated challenges in the process as the operating environment of wireless networks is very hostile + the radio environmental information (e.g. wireless channel model parameters) and network configuration information (sensor positions) might be unreliable or absent
- This presentation analyzes the network topology ambiguity problem and proposes novel localization algorithms that improve the transmitter localization performance while reducing the network topology ambiguity

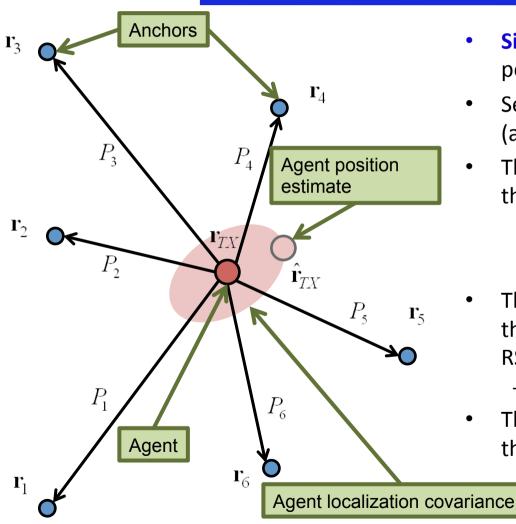


#### Outline

- Introduction
- Problem definition
- Joint Maximum Likelihood (JML)
- Concluding remarks



#### General network setup



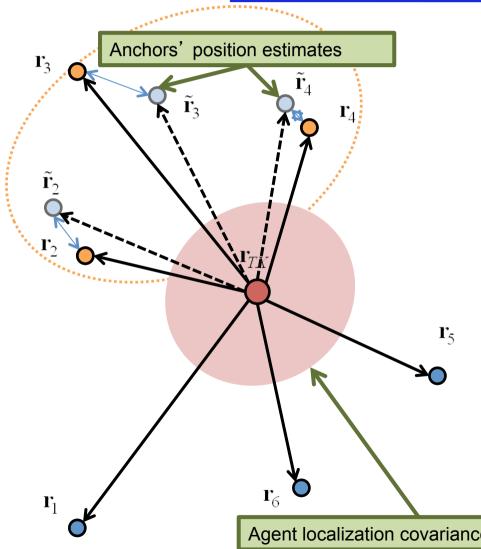
- Single transmitter (agent) with unknown position  $\mathbf{r}_{TX}$
- Set N, |N|=n of measuring sensors (anchors) with known positions  $\mathbf{r}_i$ ;  $i \in N$
- The anchors measure the RSS  $P_i$ ;  $i \in N$  of the signal broadcasted by the transmitter
- The transmitter position  $\hat{\mathbf{r}}_{TX}$  estimated through (unbiased) **estimation** using the RSS observations
  - Using appropriate path loss model\*
- The localization error quantified through the covariance matrix

$$\mathbf{C}_{\hat{\mathbf{r}}_{TX}} = \mathrm{E}\left[\left(\hat{\mathbf{r}}_{TX} - \mathbf{r}_{TX}\right)\left(\hat{\mathbf{r}}_{TX} - \mathbf{r}_{TX}\right)^{T}\right]$$

<sup>\*</sup> R. K. Martin, and R. Thomas, "Algorithms and bounds for estimating location, directionality, and environmental parameters of primary spectrum users," IEEE Transaction on Wireless Communications 8(11), pp. 5692-5701, November 2009.



## Anchor position ambiguity



- The position information of some anchors is obtained through previous estimation
- The anchor position **estimates** are  $\tilde{\mathbf{r}}_i$  and they satisfy  $\tilde{\mathbf{r}}_{i} \neq \mathbf{r}_{i}$ 
  - Ambiguous and often very unreliable network topology information
- The ambiguous anchor position information  $\tilde{\mathbf{r}}_{i}$  can cause **severe deterioration** of the localization algorithms' performance
- New localization algorithms for scenarios with ambiguous topologies needed



#### Outline

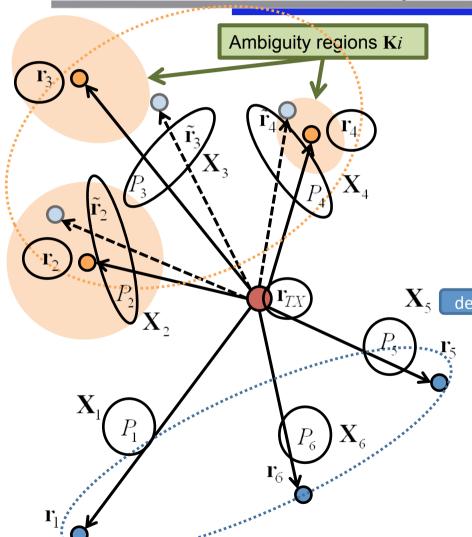
- Introduction
- Problem definition
- Joint Maximum Likelihood (JML)
- Concluding remarks



- The ambiguity problem can be alleviated with localization algorithms that jointly estimate the agent's and the anchors' exact positions\*
  - MImprove the transmitter localization performance
  - Reduce the network topology ambiguity
- The joint localization relies on the assumption that the erroneous information about the anchor positions is obtained by some previous estimation
  - Modeled as a random process parameterized with respect to the exact anchor positions
- This work presents a general joint RSS-based localization framework developed using non-Bayesian estimation formalism\*
  - The unknown agent's and ambiguous anchors' positions are regarded as deterministic parameters → the technically correct estimation approach for scenarios with imprecise anchor position information







- Two subsets of anchors:
  - Subset V, |V|=v -> anchors with certain i.e.
     precisely known position (Base Stations or APs)
  - Subset U, |U|=u -> anchors with **ambiguous** positions
- The data vector is  $\mathbf{X} = (\mathbf{X}_1, ..., \mathbf{X}_n)^T \in \mathbb{R}^{n+2u}$   $\mathbf{X}_i = \begin{cases} (P_i \ \tilde{\mathbf{r}}_i)^T \ i \in U \\ P_i \ i \in V \end{cases}$
- The unknown parameters vector is

deterministic 
$$\boldsymbol{\theta} = (\mathbf{r}_{TX},...,\mathbf{r}_i,...)_{i\in U}^T \in \mathbb{R}^{2+2u}$$

- Assumptions:
  - Propagation model: log-distance path loss model in log-normal uncorrelated shadowing  $\sigma(\text{in }dB)$   $P_i \sim \aleph(\delta_i(\mathbf{\theta}), \sigma^2); i \in N$

$$\delta_i(\mathbf{\theta}) = P_{TX} - L_0 - 10\gamma \log_{10} \left( ||\mathbf{r}_{TX} - \mathbf{r}_i|| / d_0 \right)$$

Anchor position estimates: i.i.d. Gaussian\*

$$\tilde{\mathbf{r}}_i \sim \aleph(\mathbf{r}_i, \mathbf{K}_i); i \in U$$

<sup>\*</sup> J. Hemmes, D. Thain, and C. Poellabauer, "Cooperative Localization in GPS-Limited Urban Environments," First International Conference ADHOCNETS 2009, Ontario, CA, 2009, pp. 422-437.



### Joint Maximum Likelihood



- The main task of the RSS-based joint localization framework is to estimate  $\theta$  based on the information contained in  $X^*$
- Employing Maximum Likelihood (ML) approach\* results in the Joint Maximum Likelihood (JML) localization algorithm

$$\hat{\boldsymbol{\theta}}_{JML} = \arg\max_{\boldsymbol{\theta}} \left\{ \ln p(\mathbf{X}; \boldsymbol{\theta}) \right\} = \arg\max_{\boldsymbol{\theta}} \left\{ -\frac{1}{\sigma^2} \sum_{i=1}^{n} (P_i - \delta_i(\boldsymbol{\theta}))^2 - \sum_{i \in U} (\tilde{\mathbf{r}}_i - \mathbf{r}_i)^T \mathbf{K}_i^{-1} (\tilde{\mathbf{r}}_i - \mathbf{r}_i) \right\}$$

where  $p(X;\theta)$  is the joint probability density function of the data vector X

• When  $\tilde{\mathbf{r}}_i = \mathbf{r}_i$ ;  $i \in N$ , then  $\mathbf{\theta} = \mathbf{r}_{TX}$  and the JML becomes the **Legacy ML** (LML) localization algorithm  $\hat{\mathbf{r}}_i = \mathbf{r}_i$ 

$$\hat{\boldsymbol{\theta}}_{LML} = \arg\min_{\boldsymbol{\theta}} \left\{ \sum_{i=1}^{n} (P_i - \delta_i(\boldsymbol{\theta}))^2 \right\}$$

## JML performance evaluation (1/4)



#### transmitter localization

| Simulation parameters           |           |
|---------------------------------|-----------|
| Simulated area                  | 20mX20m   |
| Transmit power                  | 0dBm      |
| Path loss exponent              | 2.5       |
| Reference distance              | 1m        |
| Transmitter position            | (9,9)m    |
| Shadowing std. deviation        | 1:1:10 dB |
| Number of anchors               | 10        |
| Number of ambiguous anchors     | 10 (U=N)  |
| Anchor ambiguity std. deviation | 1:3:10 m  |
| Monte-Carlo trials (L)          | 10000     |





$$\mathbf{K}_{i} = \Delta^{2} \mathbf{I}_{2}; \ i \in U$$

$$\hat{\boldsymbol{\theta}}_{JML} = \underset{\boldsymbol{\theta}}{\operatorname{arg\,min}} \left\{ \sum_{i=1}^{n} \left( \sigma^{-2} \left( P_{i} - \delta_{i}(\boldsymbol{\theta}) \right)^{2} + \Delta^{-2} \left\| \tilde{\boldsymbol{r}}_{i} - \boldsymbol{r}_{i} \right\|^{2} \right) \right\}$$

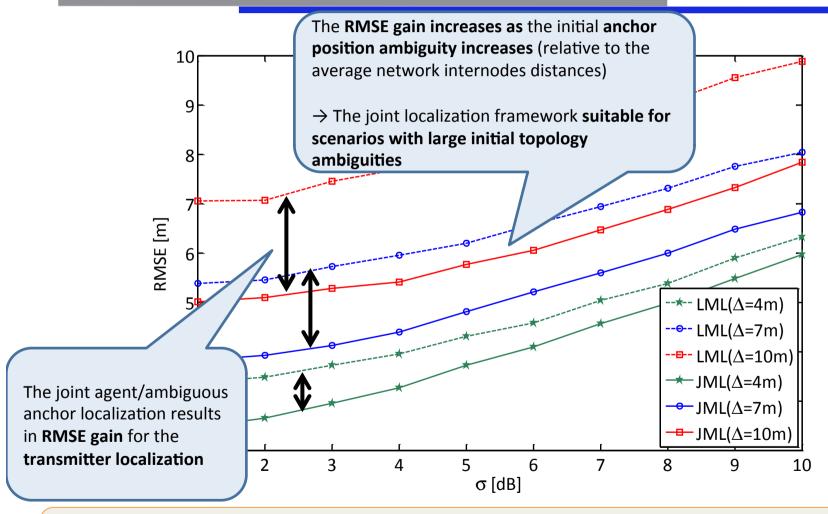
GOAL: Compare the Root Mean Squared Error (RMSE) performance of the JML with the performance of the LML in terms of the transmitter localization capabilities

$$RMSE(\hat{\mathbf{r}}_{TX}; \sigma, \Delta) = \sqrt{\frac{1}{L} \sum_{j=1}^{L} \left\| \hat{\mathbf{r}}_{TX\hat{y}} - \mathbf{r}_{TX} \right\|^{2}}; \ \hat{\mathbf{r}}_{TX\hat{y}} = \begin{cases} [\hat{\boldsymbol{\theta}}_{JMLj}]_{1:2}; \ \mathbf{JML} \\ \hat{\boldsymbol{\theta}}_{LMLj}; \ \mathbf{LML} \end{cases}$$

## JML performance evaluation (2/4)







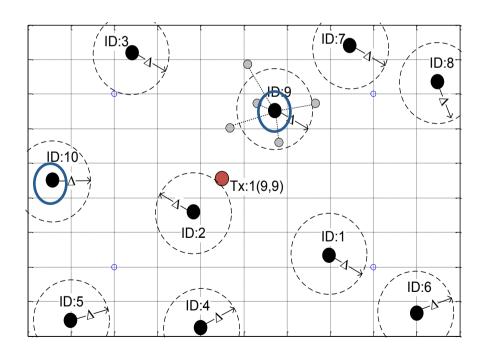
The JML performs better than the LML → reliable transmitter localization is possible in scenarios with ambiguous anchor positions

## JML performance evaluation (3/4)





**GOAL**: Compare the **Root Mean Squared Error** (RMSE) performance of the JML in terms of reducing the initial network topology ambiguity



$$RMSE(\hat{\mathbf{r}}_{i}; \sigma, \Delta) = \sqrt{\frac{1}{L} \sum_{j=1}^{L} \|\hat{\mathbf{r}}_{ij} - \mathbf{r}_{i}\|^{2}};$$

$$\hat{\mathbf{r}}_{i} = \hat{\mathbf{r}}_{i} \hat{\mathbf{r}}_{ij} - \hat{\mathbf{r}}_{i} \hat{\mathbf{r}}_{ij}^{2} + \hat{\mathbf{r}}_{ij}^{2} \hat{\mathbf{r}}_{ij}^{2} + \hat{\mathbf{r}}_{ij}^{2} \hat$$

$$\hat{\mathbf{r}}_{ij} = [\hat{\mathbf{\theta}}_{JMLj}]_{(2i+1):(2(i+1))}; i = 9,10$$

**Initial Anchor Position Ambiguity** 

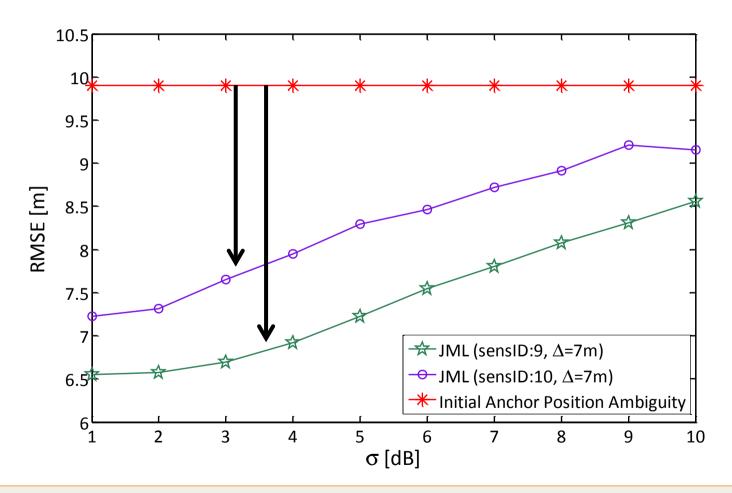


$$RMSE_{init}\left(\hat{\mathbf{r}}_{i};\sigma,\Delta\right) = \sqrt{Tr[\mathbf{K}_{i}]} = \Delta\sqrt{2};\ i \in U$$

## JML performance evaluation (4/4)







The JML improves the reliability of the anchor position estimates

→ reduced network topology ambiguity



#### Outline

- Introduction
- Problem definition
- Joint Maximum Likelihood (JML)
- Concluding remarks



## Concluding remarks



- In challenging environments, the information about the sensors' positions might be unreliable → the problem can be alleviated using joint localization algorithms
- This work introduced general RSS-based localization framework using non-Bayesian estimation formalism that:
  - Improves the transmitter localization performances
  - Reduces the sensors' positional ambiguity
- The JML is introduced as a typical representative of the proposed framework
- The JML performance evaluation proves that substantial transmitter localization improvements and network ambiguity reduction gains can be attained via joint localization



# THANK YOU FOR YOUR KIND ATTENTION!

#### **QUESTIONS?**

http://wingroup.feit.ukim.edu.mk



## Backup slides

## Theoretical performance bounds

• The Cramer-Rao Lower Bound (CRLB) [1] bounds the covariance matrix of any unbiased, non-Bayesian estimator of  $\theta$  via the inverse of the Fisher Information Matrix (FIM)  $J(\theta)$ 

$$\mathbf{C}_{\hat{\mathbf{r}}_{TX}} \geq \mathbf{J}^{-1} \left( \mathbf{r}_{TX} \right) = \mathbf{\Psi}^{-1} \left[ \mathbf{I}_{2} + \Upsilon \mathbf{J}^{-1} (..., \mathbf{r}_{i}, ...) \Upsilon^{T} \mathbf{\Psi}^{-1} \right]$$

$$\mathbf{C}_{\hat{\mathbf{r}}_{i}} \geq \mathbf{J}^{-1} \left( \mathbf{r}_{i} \right) = (a_{i} \mathbf{R}_{i} + \mathbf{K}_{i}^{-1})^{-1} \left[ \mathbf{I}_{2} + a_{i}^{2} \mathbf{R}_{i} \mathbf{J}^{-1} \left( \mathbf{r}_{TX} \right) \mathbf{R}_{i} (a_{i} \mathbf{R}_{i} + \mathbf{K}_{i}^{-1})^{-1} \right]$$

$$\mathbf{\Psi} = \sum_{i=1}^{n} a_{i} \mathbf{R}_{i}; \mathbf{R}_{i} = \mathbf{q}_{i} \mathbf{q}_{i}^{T}; a_{i} = \left( 10 \gamma (\sigma \Delta \ln 10 d_{i})^{-1} \right)^{2}; \mathbf{q}_{i} = (\cos \phi_{i} \sin \phi_{i})^{T}; \Upsilon = -(...a_{i} \mathbf{R}_{i} ...)_{i \in U}$$

- Objective: prove convergence of the derived bounds by investigating the asymptotic performance of the JML
  - The JML is expected to achieve the CRLB in terms of RMSE for small environmental variability and small anchor position errors (i.e. in the small variation/error region)

$$RMSE(\hat{\mathbf{r}}_{TX}; \sigma, \Delta) = \sqrt{\frac{1}{L} \sum_{j=1}^{L} ||\hat{\mathbf{r}}_{TXj} - \mathbf{r}_{TX}||^{2}}; RMSE(\hat{\mathbf{r}}_{i}; \sigma, \Delta) = \sqrt{\frac{1}{L} \sum_{j=1}^{L} ||\hat{\mathbf{r}}_{ij} - \mathbf{r}_{i}||^{2}}$$

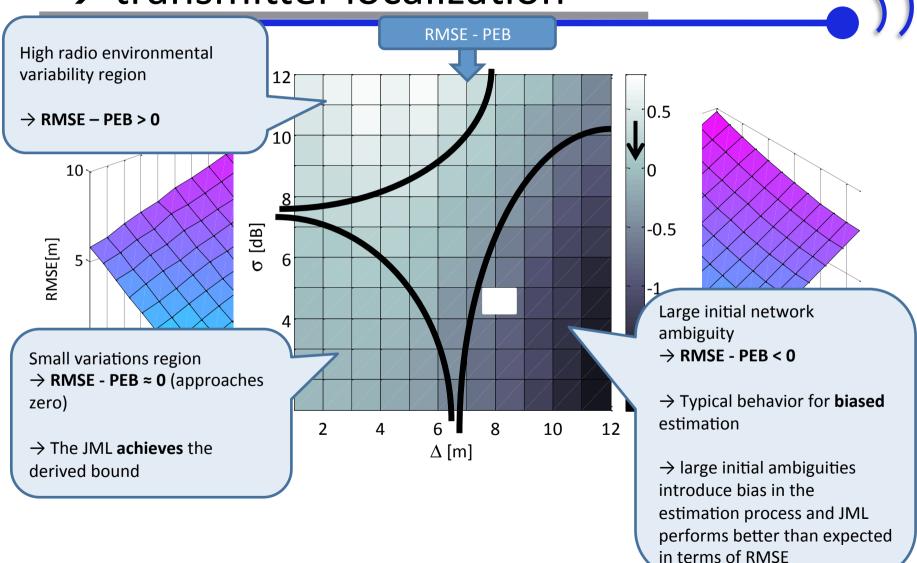
$$PEB(\mathbf{r}_{TX}; \sigma, \Delta) = \sqrt{Tr[\mathbf{J}^{-1}(\mathbf{r}_{TX})]}; PEB(\mathbf{r}_{i}; \sigma, \Delta) = \sqrt{Tr[\mathbf{J}^{-1}(\mathbf{r}_{i})]}$$

RMSE: simulation

Position Error Bound (PEB): theoretical

### Bound convergence (1/3)

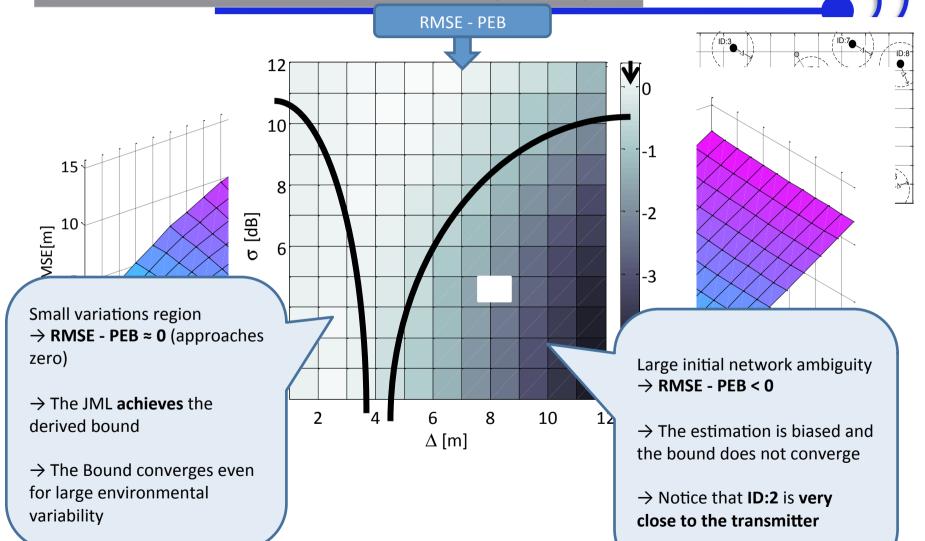




## Bound convergence (2/3)

→ anchor localization (ID:2)

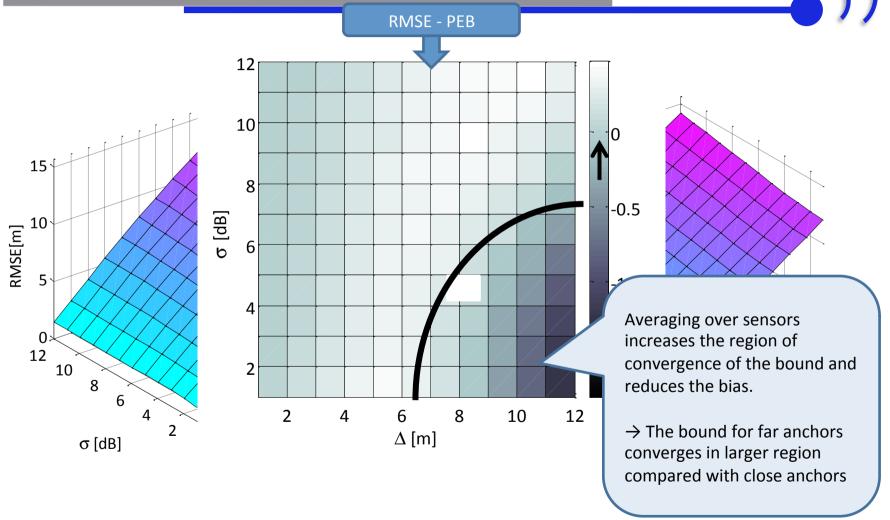




## Bound convergence (3/3)









#### Joint Maximum Likelihood

- The main task of the RSS-based joint localization framework is to estimate  $\theta$  based on the information contained in X [1]
- Employing Maximum Likelihood (ML) approach [1], results in the Joint Maximum Likelihood (JML) localization algorithm

$$\hat{\boldsymbol{\theta}}_{J\!M\!L} = \arg\max_{\boldsymbol{\theta}} \left\{ \ln p(\mathbf{X}; \boldsymbol{\theta}) \right\} = \arg\min_{\boldsymbol{\theta}} \left\{ -\ln p(\mathbf{X}; \boldsymbol{\theta}) \right\}$$

where  $p(X;\theta)$  is the joint probability density function of the data vector X

• Employing the path loss and the anchor position estimate distribution assumptions, the log-likelihood function  $L(\theta|\mathbf{X})=\ln p(\mathbf{X};\theta)$  results in

$$L(\boldsymbol{\theta} \mid \mathbf{X}) = \ln p(\mathbf{X}; \boldsymbol{\theta}) = -\frac{1}{\sigma^2} \sum_{i=1}^{n} (P_i - \delta_i(\boldsymbol{\theta}))^2 - \sum_{i \in U} (\tilde{\mathbf{r}}_i - \mathbf{r}_i)^T \mathbf{K}_i^{-1} (\tilde{\mathbf{r}}_i - \mathbf{r}_i)$$

• When  $\tilde{\mathbf{r}}_i = \mathbf{r}_i$ ;  $i \in N$ , then  $\mathbf{\theta} = \mathbf{r}_{TX}$  and the JML becomes the Legacy ML (LML) localization algorithm

$$\hat{\boldsymbol{\theta}}_{LML} = \arg\min_{\boldsymbol{\theta}} \left\{ \sum_{i=1}^{n} (P_i - \delta_i(\boldsymbol{\theta}))^2 \right\}$$

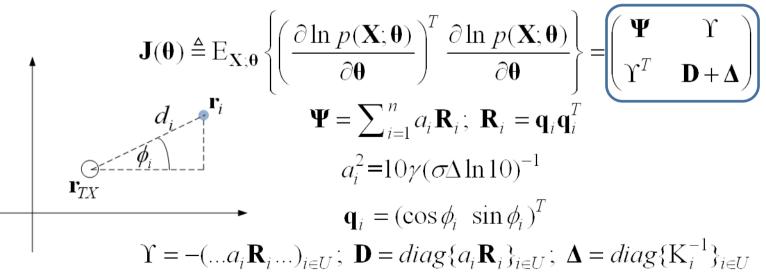


## Performance bounds (1/2)

- The Cramer-Rao Lower Bound (CRLB) [1] bounds the performance of any unbiased, non-Bayesian estimator of  $\theta$  via the inverse of the Fisher Information Matrix (FIM)
- The information inequality provides the CRLB estimation bound for  $\theta$  [1]

$$\mathbf{C}_{\hat{\mathbf{\theta}}} \geq \mathbf{J}^{-1}(\mathbf{\theta})$$

- The information inequality bounds the covariance matrix of any unbiased estimator of deterministic parameters with the inverse of the FIM calculated for the respective parameters
- Fisher Information Matrix for the parameter vector  $oldsymbol{ heta}$ 
  - Quantifies the information about the unknown parameter  $oldsymbol{ heta}$  vector contained in the observed data  $oldsymbol{ ext{X}}$





## Performance bounds (2/2)

- The Equivalent FIM (EFIM) can be calculated as Schur's complement of the FIM
  - The positional information can be studied **separately** for each node in the network

$$\mathbf{J}(\mathbf{r}_{TX}) = \mathbf{\Psi} - \Upsilon \left(\mathbf{D} + \mathbf{\Delta}\right)^{-1} \Upsilon^{T} = \sum_{i=1}^{n} a_{i} \mathbf{R}_{i} - \sum_{i \in U} a_{i}^{2} \mathbf{R}_{i} \mathbf{K}_{i} \mathbf{R}_{i} + \sum_{i \in U} \frac{a_{i}^{3} \mathbf{R}_{i} \mathbf{K}_{i} \mathbf{R}_{i} \mathbf{K}_{i} \mathbf{R}_{i}}{1 + a_{i} \mathbf{q}_{i}^{T} \mathbf{K}_{i} \mathbf{q}_{i}}$$

$$\mathbf{J}(\mathbf{r}_{i}) = \left(a_{i} \mathbf{R}_{i} + \mathbf{K}_{i}^{-1}\right) - a_{i}^{2} \mathbf{R}_{i} \mathbf{\Psi}^{-1} \mathbf{R}_{i} - a_{i}^{2} \mathbf{R}_{i} \mathbf{\Psi}^{-1} \Upsilon_{U/\{i\}} \mathbf{J}_{U/\{i\}}^{-1} (..., \mathbf{r}_{i}, ...) \Upsilon_{U/\{i\}}^{T} \mathbf{\Psi}^{-1} \mathbf{R}_{i}; i \in U$$

$$\mathbf{J}(\mathbf{r}_{i}) = \left(a_{i}\mathbf{R}_{i} + \mathbf{K}_{i}^{-1}\right) - a_{i}^{2}\mathbf{R}_{i}\mathbf{\Psi}^{-1}\mathbf{R}_{i} - a_{i}^{2}\mathbf{R}_{i}\mathbf{\Psi}^{-1}\Upsilon_{U/\{i\}}\mathbf{J}_{U/\{i\}}^{-1}(...,\mathbf{r}_{i},...)\Upsilon_{U/\{i\}}^{T}\mathbf{\Psi}^{-1}\mathbf{R}_{i};\ i \in U$$

The CRLB for each network node (transmitter and sensors) is obtained by employing the EFIM expressions in the information inequality

$$\mathbf{C}_{\hat{\mathbf{r}}_{TX}} \geq \mathbf{J}^{-1} \left( \mathbf{r}_{TX} \right) = \mathbf{\Psi}^{-1} \left[ \mathbf{I}_2 + \Upsilon \mathbf{J}^{-1} (..., \mathbf{r}_i, ...) \Upsilon^T \mathbf{\Psi}^{-1} \right]$$

$$\mathbf{C}_{\hat{\mathbf{r}}_{TX}} \geq \mathbf{J}^{-1} \left( \mathbf{r}_{TX} \right) = \mathbf{\Psi}^{-1} \left[ \mathbf{I}_{2} + \Upsilon \mathbf{J}^{-1} (..., \mathbf{r}_{i}, ...) \Upsilon^{T} \mathbf{\Psi}^{-1} \right]$$

$$\mathbf{C}_{\hat{\mathbf{r}}_{i}} \geq \mathbf{J}^{-1} \left( \mathbf{r}_{i} \right) = \left( a_{i} \mathbf{R}_{i} + \mathbf{K}_{i}^{-1} \right)^{-1} \left[ \mathbf{I}_{2} + a_{i}^{2} \mathbf{R}_{i} \mathbf{J}^{-1} \left( \mathbf{r}_{TX} \right) \mathbf{R}_{i} \left( a_{i} \mathbf{R}_{i} + \mathbf{K}_{i}^{-1} \right)^{-1} \right]$$