

Analysis of a distributed inter-cell interference coordination scheme in a real-world office deployment scenario

Oscar Tonelli, Ignacio Rodriguez, Gilberto Berardinelli, Jakob L. Buthler, Andrea F. Cattoni, Troels B. Sørensen and Preben E. Mogensen

Aalborg University, Denmark

What is this all about?

Interference Coordination
schemes (FD-ICIC) provide
interference mitigation
capabilitites in multicellular
networks

Developing an experimental approach for the **concept validation** in practical realworld deployments

Exploiting on-field measurements in network anaysis

- A typical validation approach for Radio Resource Management (RRM) solutions relies on system-level simulations exploiting several abstraction models
- Scenario model assumptions play a fundamental role in shaping the network interference conditions
- Employ direct radio link measurements in place of scenario models

Our study case

- The Autonomous Component Carrier Selection (ACCS) algorithm
- De-centralized decision making process, relies on spectrum sensing information and explicit coordination
- Previously analyzed assuming reference scenario models
- Focus on the downlik performance

Measurement campaign in indoor office scenario

- Aiming for a large scenario data-set to be used with hybrid simulations
- 45 node locations → 990 radio links measurements
- 14 testbed nodes
- Multiple testbed re-deployments in static-propagation environment conditions

Experimental Setup

- USRP N200 boards with XCVR 2450 RF front-end
- 44 carrier frequencies analyzed in the 5GHz band
- Up to 850
 measurements in time
 and frequency per
 single-link

- A multi-node channel sounder application developed with the ASGARD SDR platform
- Frame-based execution of the measurements
- Automatic transceiver reconfiguration

Measured path loss values on the links

ACCS performance results in the selected scenario

5CCs provide the best capacity improvement with respect to network outage

Performance comparison with literature studies

Comparing the experimental scenario with the 3GPP dual stripe

Normalized cell throughput results

Scheme	Scenario	Outage	Avg	Peak
Reuse 1	NJV12	6.6%	29.7%	60.8%
	Dual Stripe 20% DR*	5%	60%	100%
	Dual Stripe 80% DR*	0.9%	21%	64%
ACCS	NJV12	18%	33.3%	65.8%
	Dual Stripe 20% DR*	19%	66%	100%
	Dual Stripe 80% DR*	12%	30%	59%
G-ACCS	NJV12	15.1%	33.3%	79.4%
	Dual Stripe 20% DR*	17%	70%	100%
	Dual Stripe 80% DR*	6%	32%	72%

* from: L. G. U. Garcia, I. Z. Kovács, K. I. Pedersen, G. W. O. Costa and P. E. Mogensen, "Autonomous Component Carrier Selection for 4G Femtocells - A Fresh Look at an Old Problem," IEEE Journal on Selected Areas in Communications, vol. 30, no. 3, pp. 525-537, April 2012.

For further information please visit:

asgard.lab.es.aau.dk

ACCS performance results in the selected scenario (2)

Optimal BCC selection threshold set at 20 dB