Improved Bootstrapping Approach in Multichannel Cognitive Radio Ad Hoc Networks

The 4th Workshop of COST Action IC0902
October 9-11, 2013

Oleksandr (Alex) Artemenko, Paulo M. R. dos Santos
Motivation

• **Problem**
 – Establishment and maintenance of common control channels (CCC) in a dynamic environment

• **Research Focus**
 – Investigation of spectrally efficient distributed schemes for establishing and maintaining CCC in CRAHNs
Outline

- Related Work
- Previous Work
- New Problem
- Improvement
- Simulation Results
- Summary
Related work

Common Control Channel Design for Cognitive Radio Ad Hoc Networks

<table>
<thead>
<tr>
<th>Approach</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedicated</td>
<td>Design simplicity</td>
<td>Single point of failure</td>
</tr>
<tr>
<td>Ultra-Wide Band</td>
<td>Robust to PU activity</td>
<td>Transmission range</td>
</tr>
<tr>
<td>Sequence-Based</td>
<td>Bounded rendezvous time Low network overhead</td>
<td>Hopping sequences not adaptable to PU activity</td>
</tr>
<tr>
<td>Group-Based</td>
<td>Efficient broadcasting of control information</td>
<td>High network overhead</td>
</tr>
</tbody>
</table>

Design Goals!

Previous Work

Layer 2
- Wireless token-ring protocol [1]

Layer 1
- Physical layer bootstrap protocol [2]

Distributed Consensus Algorithm

Distributed Consensus Algorithm [1]

Set of spectrum opportunities

\[M = \{1, \ldots, m\} \]

Utility Function

\[U(m) = \frac{B_m}{|N_m|} \sum_{n \in N_m} \log_2 (1 + SINR_n) \]

Handover solution

\[\arg \max_m U(m) \]

Distributed consensus agent

\[O \]

\[n^{th} \text{ ring-participant} \]

\[n \]

Co-located interferer

\[I \]

Received signal vector

Interference vector

Direction of token rotation

Research Idea:
Token-embedded pilot tone for SINR estimation

Token-Ring Timing Diagram

Ring-participant 1

Ring-participant n

Token Holding Time

Maximum Token Rotation Time

Simulation Results

<table>
<thead>
<tr>
<th>Simulation parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation area</td>
<td>1 km^2</td>
</tr>
<tr>
<td>Network spatial deployment</td>
<td>Random</td>
</tr>
<tr>
<td>Propagation model</td>
<td>Free space path loss</td>
</tr>
<tr>
<td>Channel bandwidth</td>
<td>200 kHz</td>
</tr>
<tr>
<td>CR TX power (EIRP)</td>
<td>30 dBm</td>
</tr>
<tr>
<td>SINR threshold</td>
<td>20 dB</td>
</tr>
<tr>
<td>Receiver noise floor</td>
<td>-147 dB</td>
</tr>
<tr>
<td>Network mobility model</td>
<td>None (static network)</td>
</tr>
</tbody>
</table>

Simulation Results – Network Capacity

Simulation Results – Spectrum Occupancy

\[\Delta = -9.0\% \quad (-1\text{ ch}) \]
\[\Delta = -12.2\% \quad (-3\text{ ch}) \]
\[\Delta = -14.1\% \quad (-14\text{ ch}) \]

New Problem

• Old scheme:
 – Good for bandwidth equally deployed among subnets
 – Bad otherwise

• Improvement is required
Improved Distributed Consensus Algorithm

- Takes into account number of ring-participating nodes
- Provides fairness

New Utility Function

\[U_{new}(m) = \frac{B_m}{N_m^2} \sum_{n \in N_m} \log_2 (1 + SINR_n) \]
Simulation Results – Spectrum Efficiency

\[\Delta = \frac{\eta_{\text{new}} - \eta_{\text{previous}}}{\eta_{\text{new}}} \] [%]
\[\eta = \frac{C_{\text{net}}}{M \cdot B} \] [bps/Hz]

- \(C_{\text{net}} \) – total network capacity
- \(M \) – number of spectrum opportunities
- \(B \) – bandwidth of each spectrum opportunity
Demonstration Video

• Random channel hopping vs distributed consensus

• Simulation parameters
 – 200 Cognitive Radios
 – 1 km² simulation area
 – Free space path loss propagation model

1 min video
Summary

• Efficient CCC for CRAHNs
• Idea: Distributed Consensus Algorithm
• New utility function:
 – Better efficiency (4-12%)
 – Provides fairness

• Further steps:
 – SINR estimation
 – Upper bound efficiency estimation as benchmark
Questions?
Thank you for your attention!

Dr.-Ing. Oleksandr Artemenko
Integrated Communication Systems Group
International Graduate School on Mobile Communications
Ilmenau University of Technology

Tel: +49 (0) 3677 69 2788
Fax: +49 (0) 3677 69 1226
E-mail: oleksandr.artemenko@tu-ilmenau.de
Website: www.tu-ilmenau.de/ics