

Facoltà di Ingegneria

Tesi di Laurea Specialistica in:

INGEGNERIA DELLE TELECOMUNICAZIONI

TOWARDS COGNITIVE NETWORKING:

Automatic Recognition of Technologies Operating in the ISM

Bands

 Candidata:

 Carmen J. Martin Martin

Relatore:

Prof.ssa Maria-Gabriella Di Benedetto

 Anno Accademico

2009/2010

Carmen J. Martin Martin – SAPIENZA Università di Roma

1

Acknowledgment

I’ve always thought that a man is just as big as the size of his efforts… However,

many times whatever we achieve depends not only on us, but on the wonderful people God

has put right beside us. Today, I’d like to thank some of that people:

First off, my Family –the greatest blessing God has provided me with. A set of

parents that have been the best role models for perseverance, everlasting love, honesty and

humbleness. Thank you for supporting me all the way and believing in me even at those

times when I wouldn’t. To Veronica, for being the best sister in the whole wide world: you

always cheered me up and you bear with my nighttime bad moods. I love you, my Vero! To

my three little ones –Vicky, Isa and Gaby – I love you like crazy; you fill my life with joy, light

and love. To my aunts and uncles, grandparents and godparents for trusting me and being

there for me in the hardest of times. All of you are my cherished Treasure.

To my girl-friends, for being there and teaching me the true meaning of Friendship:

someone that’s always there in the happiest moments and the not-so-happy ones, someone

that knows no distance… I love you guys.

To a very special being, an angel –wherever you are I know you’d be happy to see me

becoming a full-fledged Engineer.

To my “Gordo”, even when I know I barely ever say it: Thanks! For being alive, for

bringing joy to my life and for being an awesome dissertation partner. I admire you. I am very

proud of you.

To Cris, for adopting me as a little sister, for putting up with the sleepless nights and

nuisances, without you this road would have been fair wearier… Thanks, pequegna!

To the people that in the last few months has become our Family, making us feel at

home: To Prof.ssa Maria-Gabriella for being the paragon of intelligence, beauty and warmth

of heart. To Luca and Dome for being patient and giving us the opportunity to learn

something new day in and day out. To Stefano and Sergio for offering us their Friendship,

Carmen J. Martin Martin – SAPIENZA Università di Roma

2

company and for giving us a good laugh in the most stressful moments at the Lab. You are all

very special to me!

Last but not least, to God for giving a new chance at life, laughter and dreaming

every single day.

I am incredibly grateful to all of you.

Carmen J. Martin Martin – SAPIENZA Università di Roma

3

Contents

Contents 3

Chapter 1 11

INTRODUCTION 11

1.1 Cognitive Radio 11

1.2 Unlicensed Bands 13

1.3 Background and Motivations 15

1.4 Organization of the work 16

Chapter 2 17

WIRELESS LAN MEDIUM ACCESS CONTROL (MAC) AND

PHYSICAL LAYER (PHY) SPECIFICATIONS 17

2.1 Overview 17

2.2 General Description of the architecture 24

2.2.1 The independent BSS as an ad hoc network 25

2.2.2 Distribution System Concepts 25

2.2.3 Integration with wired LANs 27

2.2.4 Logical Service Interfaces 28

2.3 Frame Structure 29

2.3.1 Frame Control 30

2.3.2 Duration/ID 34

2.3.3 Address 35

2.3.4 Sequence Control 36

2.3.5 QoS (Quality of Service) Control Field 37

2.3.6 Frame Body 37

2.3.7 FCS 37

2.3.8 Format for individuals frame types 38

2.4 MAC Sublayer Functional Description 48

2.4.1 MAC Architecture 48

2.4.2 DCF 51

2.4.3 PCF 59

Carmen J. Martin Martin – SAPIENZA Università di Roma

4

2.5 Physical Layer (PHY) service specification. 61

Chapter 3 73

PATTERN RECOGNITION BY LINEAR CLASSIFICATION

APPROACH 73

3.1 Pattern Recognition task 73

3.2 Linear Discrimination Functions and Decision Hyperplanes 75

3.3 The Pocket Algorithm 80

3.4 Stochastic Approximation and LMS 81

3.5 Sum of Error Squares Estimation 82

3.6 Logistic Discrimination 84

3.7 Multi-Class Case 85

Chapter 4 88

PACKET CLASSIFIER 88

4.1 Generalized Classification Approach 88

4.2 Feature Selection 93

4.3 Experimentation 96

4.3.1 Training Set Construction 96

4.3.2 Classification Results 105

CONCLUSIONS AND FUTURE WORK 113

References 115

Appendix 117

Carmen J. Martin Martin – SAPIENZA Università di Roma

5

List of Figures

 1.1 Cognitive Radio operation 12

 1.2 Industrial Scientific and Medical (ISM) bands 1 13

2.1 IEEE 802 Family 17 17

2.2 BSS Structure23 23

2.3 DS and AP 24

2.4 ESSS 25

2.5 Connecting to other IEEE 802 LANs 25

2.6 Complete IEEE 802.11 architecture 28

2.7 Frame format 28

2.8 Frame Control field 29

2.9 WEP procedure 33

2.10 Sequence Control field 35

2.11 RTS frame structure 38

2.12 CTS frame structure 38

2.13 ACK frame structure 39

2.14 PS-Poll frame structure 39

2.15 CF-End frame structure 40

2.16 Management frame structure 41

2.17 MAC architecture 47

Carmen J. Martin Martin – SAPIENZA Università di Roma

6

2.18 Coexistence Contention Free and Contention Period 48

2.19 RTS – CTS procedure 52

2.20 IFS relationships 54

2.21 Basic Access method 55

2.22 Backoff procedure 57

2.23 Ack procedure 57

2.24 Timing relationships 58

2.25 Example of PCF frame transfer 59

2.26 PLCP frame format 61

2.27 Portion of the ISO/IEC basic reference model 63

2.28 Long preamble version’s format 65

2.29 Short preamble version’s format 65

2.30 OFDM PLCD format 67

2.31 2.4 GHz Band 71

3.1 Basic stages envolved in the design of a classification system 73

3.2 An illustration of two-class case and decision rule 74

3.3 The linear decision boundary 75

3.4 Geometric interpretation of the perceptron algorithm 78

3.5 Geometric interpretation of the Support Vector Machines 79

3.7 Linear decision boundaries for a four-class problem,

 ωi/not ωi dichotomies 84

Carmen J. Martin Martin – SAPIENZA Università di Roma

7

3.8 Linear decision boundaries for a four-class problem, ωi /ωj dichotomies and the

corresponding decision boundaries Hij 85

4.1 Example of Characterization Stage (Class 1) 88

4.2. Example of Characterization Stage (Class 2) 89

4.3 Training Set Example (C=2, M=3) 90

4.4. Decision Plane according to Perceptron Algorithm 90

4.5 Decision Plane according to Pocket Algorithm 91

4.6 Decision Plane according to LMS Algorithm 91

4.7 Discriminant Function according to SOE Algorithm 92

4.8 AIR-AWARE module 93

4.9 Energy Detector 93

4.10 Features Plane with Single-Slot Communication at Bluetooth Class 96

4.11 Data Point Density Histogram with Single-Slot Communication at Bluetooth

Class 97

4.12 Features Plane with Multi-Slot Communication at Bluetooth Class 98

4.13 Data Point Density Histogram with Multi-Slot Communication at Bluetooth

Class 98

 4.14 Automatic classification of Wi-Fi vs. Bluetooth Single-Slot 99

 4.15 Automatic classification of Wi-Fi vs. Bluetooth Multi-Slot 99

 4.16 Features Plane with Single-Slot Communication at Bluetooth Class 101

 4.17 Data Point Density Histogram with Single-Slot Communication at Bluetooth

Class 101

Carmen J. Martin Martin – SAPIENZA Università di Roma

8

4.18 Features Plane with Multi-Slot Communication at Bluetooth Class 102

4.19 Data Point Density Histogram with Multi-Slot Communication at Bluetooth

Class 102

4.20 Automatic classification of Wi-Fi vs. Bluetooth Single-Slot 103

4.21 Automatic classification of Wi-Fi vs. Bluetooth Multi-Slot 103

Carmen J. Martin Martin – SAPIENZA Università di Roma

9

List of Tables

1.1 Devices operating in the ISM band 13

2.1 Frames types and subtypes (1) 30

2.2 Frames types and subtypes (2) 31

2.3 To DS and From DS subfields 32

2.4 Duration/ID field 34

2.5 QoS Control field 36

2.6 Valid values for Addresses field 40

2.7 Beacon frame body (1) 42

2.8 Beacon frame body (2) 43

2.9 Association Request frame body 44

2.10 Association Response frame body (1) 44

2.11 Association Response frame body (2) 45

2.12 Probe Request frame body 45

2.13 Probe Response frame body 46

2.14 High Rate PHY characteristics 66

2.15 OFDM PHY characteristics 68

2.16 ERP PHY characteristics 70

4.1 Bluetooth Standard Specifications 96

4.2 Percentage of Error over the Training Set for each algorithm Wi-Fi and Bluetooth

Multi-slot Communication Class 100

Carmen J. Martin Martin – SAPIENZA Università di Roma

10

4.3 Percentage of Error for each algorithm over the Training Set Wi-Fi and Bluetooth

Multi-slot Communication Class.(double dimension training) 104

4.4 Classification results with single-slot Communications at Bluetooth class 105

4.5 Classification results with multi-slot Communications at Bluetooth class 106

4.6 Classification results with single-slot Communications at Bluetooth class.

(Mixed Input) 107

4.7 Classification results with multi-slot Communications at Bluetooth class. (Mixed

Input) 108

4.8 Classification results with single-slot Communications at Bluetooth class. (Double

dimension training) 109

4.9 Classification results with multi -slot Communications at Bluetooth class. (Double

dimension training) 109

4.10 Classification results with single-slot Communications at Bluetooth class. (Mixed)

(Double dimension training) 110

4.11 Classification results with multi-slot Communications at Bluetooth class. (Mixed)

(double dimension training) 111

Carmen J. Martin Martin – SAPIENZA Università di Roma

11

Chapter 1

INTRODUCTION

1 .1 Cognitive Radio

Cognitive means related to knowledge – accumulated information derived from

experience or learned through introspection. Cognitive development focuses in studying

thinking processes and the behavior derived of those. In this sense, “cognitive” is a fitting

adjective to describe the paradigm of wireless communications, where both networks and

nodes change specific parameters of transmission and reception to adjust their functioning to

a mechanism of observation and learning from environmental factors –such as,

radiofrequency spectrum, user behavior and network status.

Over the last few years, many research studies shown that spectrum use is related to

timing and location. Specific assignation of the spectrum poses a problem: frequencies

assigned to services with low use, are not available to unauthorized users, even when these

transmission will not cause any interference in this un-occupied service. This used to be the

reason why unauthorized users made use of bands that required authorization: they assumed

their work will cause no interference, since whenever a legitimate user needed to make a

transmission; they could jump to another frequency-band to continue their transmissions.

Cognitve radio was designed with the intention of enabling users to seize these temporary

voids in the electromagnetic spectrum.

Carmen J. Martin Martin – SAPIENZA Università di Roma

12

Depending on the environment and set of parameters considered to make a decision

about alterations to transmission and reception, we can distinguish some types of cognitive

radio. The term “full cognitive radio” (or Mitola’s Radio) refers to that in which any observed

parameter in a wireless node or network is taken into account for decision-making. On the

other hand, “spectrum detecting cognitive radio” observes only radiofrequency spectrum

status and makes a decision based on this parameter; depending on spectrum’s availability,

notice the following subtypes:

 Licensed bands: when cognitive radio can use bands assigned to

licensed users, asides from free access bands like ISM or UNII1.

 Unlicensed bands: when only free access parts of the radio frequency

spectrum can be used.

The most relevant requisite for cognitive radio functioning is their ability to detect

unused spectrum and used it without provoking negative interference for other users. The

best way to find these “usage voids” is detecting legitimate authorized users. Detection

techniques can be categorized as follows:

• Transmission Detection: cognitive radios need to possess the ability to

determine if there is signal from any users accessing a part of the spectrum.

• Cooperative Detection: different cognitive radio users periodically exchange

information about detection of principal users.

• Interference-based detection: Another relevant function is spectrum

administration –using bandwidth in a way that fits best the QoS required by the user, and

selecting this bandwidth amongst those available. There are two steps to spectrum

administration: spectrum analysis and spectrum decision. The first one refers to identifying

the characteristics of each available band, assessing for advantages or obstacles (such as delay

and error probability). The second step compares characteristics between bands with user’s

needs and evaluates which one is will make the best fit.

1 Unlicensed National Information Infrastructure

Carmen J. Martin Martin – SAPIENZA Università di Roma

13

Figure 1.1 - Cognitive Radio operation

 A fundamental advantage of cognitive radio is spectral mobility, the process by which

a cognitive radio changes its frequency of transmission or reception. Cognitive radios are

designed to change bands constantly, choosing the best available options in a way that is

imperceptible for users. Finally, another defining aspect of cognitive radios is the ability to

share the spectrum. This is achieved by a schematic method of spectrum’s distribution that is

fair and egalitarian for every cognitive radio user without interfering with authorized user’s

transmissions. This poses one of the greatest challenges of designing a cognitive radio, as do

generic issues of media access we face nowadays.

1 .2 Unlicensed Bands

The ISM (Industrial Scientific and Medical) bands were defined by ITU-R2. Three

sub-bands composed the ISMs:

 902-928 MHz

 2400-2483.5 MHz

 5725-5850 MHz

2 International Telecommunication Union- Radiocommunication Sector

Carmen J. Martin Martin – SAPIENZA Università di Roma

14

Figure 1.2 - Industrial Scientific and Medical (ISM) bands

In the beginning, ISM radio bands were assigned uniquely to industrial, medical

and scientific endeavors. In 1985, the Federal Communications Commission (FCC) issued

rules permitting "intentional radiators" to use these bands, however some restrictions were

outlined:

1. Maximum transmitter output is 1W (30 dBm) .

2. Maximum EIRP3 is 4W (36 dBm) .

3. For fixed point to point operation in ISM2.4, peak output

need only be reduced by 1 dBm for every 3 dBi of antenna gain above 6 .

4. In ISM5.8, you can apply all the antenna gain you want

without reduction in output power.

The next table shows the common devices operating in the ISM bands:

Table 1.1 - Devices operating in the ISM bands

3 Equivalent Isotropically Radiated Power

902-928 MHz 2.4-2.4835 GHz 5.725-5.85 GHz

• Cordless Phones

• Cordless Headphones

• Surveillance systems

• IEEE LAN Standards.

• Audio/video signal

repeaters

• Remote garage openers

• Microwave oven

• Reserved for high bit rate

networking devices

• IEEE/ETSI LAN

Standards

Carmen J. Martin Martin – SAPIENZA Università di Roma

15

Interest in using these bands has been stimulated by several factors that differ

substantially for the European approach of conscientious, but time consuming

standardization. Most importantly, there is almost a complete absence of user restrictions

(no registration procedure, no qualification of end users) as to where the products can be

used. The absence of license fees also contributes to financial attractiveness of products.

1 .3 Background and Motivations

As part of the incessant pursuit to guarantee completely aware wireless

communication behavior, automatic network recognition has become a promising attribute

dedicated to integrate cognitive mechanisms over the network layer, enabling us to come

closer to our main objective: Cognitive Networking .

Certainly, as detailed in Section 1.1, spectrum sensing plays a key role in a Cognitive

Radio, but in order to provide a qualitative description of the spectrum, air interfaces

classification is also performed [1] .

This work proposes an automatic recognition approach base on extraction of

features that best reveal MAC sublayer communication procedures. That means that in

order to recognize the different technologies operating in the ISM band, an analysis was

performed at the level of the data link layer, with the goal of finding features with sufficient

discriminatory power so that optimal classification criterion that will report good results –in

a simple and low cost fashion.

This approach include two fundamental phases: choice and extraction of features,

and implementation of a linear classification algorithm that decides which technologies are in

the air –reporting a percentage.

Work was focused in Wi-Fi versus Bluetooth recognition. In this case, four different

algorithms were implemented and tested. This stage of evaluation will demonstrate the

validity of the chosen features, as well as the performance of each of the classification

algorithms utilized.

Carmen J. Martin Martin – SAPIENZA Università di Roma

16

1 .4 Organization of the work

In Chapter 2, an exhaustive study about WLAN (IEEE802.11) was developed with

the objective of analyzing fundamental characteristics that reflect communications

procedures of the MAC sublayer, so that possible features to use on the algorithm could be

identified. The study of this technology afforded us a better understanding and knowledge of

relevant aspects and directing this work to a certain destination.

On the other hand, Chapter 3 exposes a complete description of pattern recognition,

as well as linear classification algorithms that are commonly utilized. In Chapter 4 exhaustive

definition of the issue of automatic recognition, with details about generation of training sets

and implementation of the classification block. Later on, the experimentation section is

presented with a further analysis stage.

Finally, conclusions and directions are presented to expose the results of the chosen

approach and pointing out to new and interesting research journeys.

Carmen J. Martin Martin – SAPIENZA Università di Roma

17

Chapter 2

WIRELESS LAN MEDIUM ACCESS CONTROL

(MAC) AND PHYSICAL LAYER (PHY)

SPECIFICATIONS

 2.1 Overview

A Wireless LAN [2] (Local Area Network - WLAN) is a data communication

system that can be use as an alternative to wired LANs or as an extension to an existing one.

Coverage usually extends between 10 a 100 meters; this limited reach affords lower

transmission power that allows the use of unlicensed bands. WLANs operate under

radiofrequency technology, which makes them ideal for greater flexibility, mobility,

immediate access for temporal users and ease of installation.

The IEEE (Institute of Electronics and Electrical Engineering) by way of one of

their standards (the 802.11 specifically) regulates functioning of WLANs. Standard

specifications are guided by the OSI (Open System Interconnection) model, that focus in its

inferior levels (Physical Layer and MAC Sub-layer).

This standard [3] is part of a list enforceable for local and metropolitan area

networks. The relationship between this and other standards can be illustrated as follows.

Carmen J. Martin Martin – SAPIENZA Università di Roma

18

Figure 2.1 - IEEE 802 Family

The ANSI/IEEE 802.11, 1999 Edition, is a version of the original IEEE 802.11

standard, published in 1997, with modifications such as deletion of redundant management

item and completion of one of the annexes.

The ANSI/IEEE 802.11, 1999 Edition defines protocol and compatible interaction

of data communications equipment via the air, radio or infrared, on a local area network

(LAN) using the carrier sense multiple access protocol with collision avoidance

(CSMA/CA) medium sharing mechanism. The medium access control (MAC) supports

operations, either under access point control or between independent stations. The protocol

includes authentication, association, and re-association services, optional

encryption/decryption procedure, power management and a point coordination function for

time-bounded transfer data.

Much in the same way that the MAC sub-layer establishes rules to determine

medium access and data transmission, details of transmission and reception are regulated by

the Physical Layer (PHY).

The original version of the IEEE 802.11 standard became obsolete and was fine

tuned in 1999. Back then, it specified two net bit rates of 1 or 2 megabits per second (Mbit/s),

plus forward error correction code and only three alternative physical layer technologies:

diffuse infrared operating at 1 Mbit/s; frequency-hopping spread spectrum operating at 1

Mbit/s or 2 Mbit/s; and direct-sequence spread spectrum operating at 1 Mbit/s or 2 Mbit/s.

The latter two radio technologies used microwave transmission over the Industrial Scientific

Medical frequency band at 2.4 GHz. Some earlier WLAN technologies used lower

Carmen J. Martin Martin – SAPIENZA Università di Roma

19

frequencies, such as the U.S. 900 MHz ISM band.

In 2003, task group TGma was authorized to "roll up" many of the amendments to

the 1999 version of the 802.11 standard. REVma or 802.11ma, as it was called, created a single

document that merged 8 amendments (802.11a,b,d,e,g,h,i,j) with the base standard. Upon

approval on March 8, 2007, 802.11REVma was renamed to the current base standard IEEE

802.11-2007.

Currently, different types of PHYs are in use under 802.11, with a broad range of

versions that can be categorized by utilized band, modulation type and coding; this

characteristics determine distinct transmission rates and throughputs. A brief description of

the available versions is provided here [2]:

802.11 a

The 802.11a standard uses the same data link layer protocol and frame format as the

original standard, but an OFDM based air interface (physical layer). It operates in the

5 GHz band with a maximum net data rate of 54 Mbit/s.

Since the 2.4 GHz band is heavily used to the point of being crowded, using the

relatively un-used 5 GHz band gives 802.11a a significant advantage. However, this high

carrier frequency also brings a disadvantage: the effective overall range of 802.11a is less than

that of 802.11b/g. In theory, 802.11a signals are absorbed more readily by walls and other solid

objects in their path due to their smaller wavelength and, as a result, cannot penetrate as far

as those of 802.11b. In practice, 802.11b typically has a higher range at low speeds (802.11b will

reduce speed to 5 Mbit/s or even 1 Mbit/s at low signal strengths). However, at higher

speeds, 802.11a often has the same or greater range due to less interference.

Carmen J. Martin Martin – SAPIENZA Università di Roma

20

802.11b

802.11b has a maximum raw data rate of 11 Mbit/s and uses the same media access

method defined in the original standard. 802.11b products appeared on the market in early

2000, since 802.11b is a direct extension of the modulation technique defined in the original

standard. The dramatic increase in throughput of 802.11b (compared to the original

standard) along with simultaneous substantial price reductions led to the rapid acceptance of

802.11b as the definitive wireless LAN technology.

While using a spread spectrum technique based on DSSS, the 802.11b extension

introduces CCK (Complementary Code Keying) to achieve rates of 5,5 and y 11 Mbps . This

standard also supports PBCC (Packet Binary Convolutional Coding) as an optional. All

802.11b devices must maintain compatibility with prior DSSS equipment, as specified in the

original IEEE 802.11 regulation, with rates of 1 and 2 Mbps.

802.11c

The “c” protocol is used for communication between different networks or different

types through a wireless connection, as well as connection between distant buildings. The

802.11c is a modified version of 802.1d that offers no advantages for the general public; but

allows to combine 802.1d with devices that comply with 802.11 (on the Data Link Layer).

While of less common use than its two predecessors, this protocol offers advantages –in time

and budget- over optic fiber installations to establish larger distance communications.

802.11d

A supplement to 802.11, this standard is designed to support international use over

802.11 local networks. The idea is to allow dispositive to interchange information using the

frequency range permitted by their country of origin.

802.11e

This standard offers real time applications, through its Quality of Service warranty.

802.11e is designed to support real time traffic regardless of the environment or situation. The

objective with this standard was to introduce new mechanisms on the MAC layer in order to

support services that will require QoS. To achieve this, Hybrid Coordination Function

(HCF) with two types of access was introduced:

▪ (EDCA) Enhanced Distributed Channel Access, equivalent a

Carmen J. Martin Martin – SAPIENZA Università di Roma

21

DCF.

▪ (HCCA) HCF Controlled Access, equivalent to PCF.

In this new standard four access categories are defined (in descending priority

order):

▪ Background (AC_BK)

▪ Best Effort (AC_BE)

▪ Video (AC_VI)

▪ Voice (AC_VO)

To achieve traffic differentiation medium access times and contention window sizes

are defined for each category.

802.11 f

Recommended for access point providers, it improves access point compatibility.

Utilizes the IAPP4 protocol to achieve optimal itinerancy: allowing traveling users to change

between access points while on the move, regardless of the brand of the access points on

network infrastructure.

802.11g

Made public in June 2003, 802.11g is an evolution of the b standard that uses the 2.4

GHz band with a maximum theoretical rate of 54 Mbps. It is compatible with the 802.11b

and uses the same frequencies. Currently in the market, there are “g” standard devices with

up to a half watt power, which will support communications in a range of 50 kilometers,

provided the use of parabolic antennas or appropriate radio equipment.

802.11h

The 802.11h specification for WLANs, developed by Workgroup 11 of the IEEE

LAN/MAN Committee (IEEE 802) and made public in October 2003, was designed to

troubleshoot issues derived from coexistence of 802.11 networks and Satellite / Radar

systems.

This development follows ITU recommendations made after the ERO (European

4 Inter –Access Point Protocol

Carmen J. Martin Martin – SAPIENZA Università di Roma

22

Radiocommunications Office) requirements to minimize the impact of opening the 5 GHz

band to ISM applications.The 802.11h incorporates the capability to manage dynamically

both frequency and power of transmissions (Dynamic Frequency Selection and Transmitter

Power Control). DFS allows WLANs operating on 5 GHz band to avoid co-channel

interference with Radar systems and ensures uniform utilization of available channels; while

TPC enforces required potency limitations for each regional channel, avoiding interference

with satellite systems.

802.11 i

Developed to counter the current vulnerability of authentication and coding

protocols, encompasses the following protocols: 802.1x, TKIP (Temporal Key Integrity

Protocol) and AES (Advanced Encryption Standard). The 802.11i is implemented on WPA2.

802.11 j

An equivalent of 802.11h, designed to comply with Japanese regulations.

802.11k

Allows commuters and wireless access points to value and calculate the

radiofrequency resources of a WLANs clients, improving its management. Design to be

implemented as software, LAN equipment is able to support it after updates. For the

standard to be effective, clients (WLAN adapters and cards) and infrastructure (access

points and commuters) must be compatible.

802.11n

In January 2004, IEEE announced the formation of workgroup 802. 11 to develop a

revision of the standard. Transmission rate could reach 600 Mbps and it will be up ten times

faster than 802.11a and 802.11g, and at times faster than 802.11b. Also, improvements in range

are expected thanks to the MIMO Multiple Input – Multiple Output technology, which

integrates several antennas to allow use of multiple channels during transmission. A series of

delays has plagued the development with a new deadline on November 2009. Unlike other

versions, 802.11n can work on double frequency bands (2.4 GHz and 5 GHz). This capability

makes the new standard compatible with all previous versions.

802.11p

This standard operates on the 5.9 GHz frequency band, recommended for

Carmen J. Martin Martin – SAPIENZA Università di Roma

23

automobiles it will be the building block of short range communications in the United

States. DSRC5 technology will allow data interchange between vehicles and road

infrastructure.

802.11r

Also known as Fast Basic Service Set Transition, its most relevant characteristic is

allowing the network to establish security protocols that identify a device in a new Access

Point before abandoning the previous one. This function provides a transition time of less

than 50 milliseconds. In a VoIP communication, there will be no perceptible interruptions.

802.11s

Defines manufacturer interoperability regarding Mesh protocols (networks that

combine two topologies: ad-hoc and infrastructure). Because there is no established

standard, each manufacturer has its own mesh generation mechanism.

802.11v

IEEE 802.11v (coming in 2010) will allow remote configuration of client devices,

providing in turn centralized (similar to a cellular network) or distributed (through a layer 2

mechanisms) station management. This includes network ability to supervise, configure and

update client stations. Besides management improvement, new capabilities of the 11v are:

energy savings for PDAs, positioning for services that depend on location, temporization to

support fine caliber applications and coexistence between different technologies within the

same device.

802.11w

Still in development, it’s being designed to improve the layer of medium access

control, to increase security on authentication and coding protocols. Currently, WLANs

send system information in unprotected frames that makes the network vulnerable. This

standard is created to protect networks against interruptions caused malware that creates

fake request from unassociated stations that look like they were sent from a valid device. The

11v attempts to extend the protection from the data to the management frames to ensure

security on the network’s vital operations.

5 Dedicated short-range communications

Carmen J. Martin Martin – SAPIENZA Università di Roma

24

802.11y

Published on November 2008, allows operation on 3650 to 3700 MHz bands (except

when interference can be generated) in the United States. Three new concepts are wrapped

around this standard: Contention Base Protocol (CBP), Extended Channel Switch

Announcement (ECSA), and Dependent Station Enablement (DSE). CBP includes

improvements in the detection mechanisms of portability. ECSA provides a mechanism for

the APs to notify their stations its intention to switch channels or bandwidths. Lastly, DSE

is used to manage licenses.

2 .2 General Description of the architecture

According to the IEEE 802.11 standard [3], the WLAN’s architecture consists in

various components interacting to create a WLAN that supports station mobility

transparently to upper layers.

The Basic Service Set (BSS) is the building block of an IEEE 802.11 LAN. The

following figure displays two BSSs, each one with two client stations.

Figure 2.2 - BSS Structure

Carmen J. Martin Martin – SAPIENZA Università di Roma

25

The ovals describe BSSs coverage areas through which member stations can remain

communicated. If a member station moves out of range, it will no longer be able to establish

communication with other BSS’s members.

2 .2 .1 The independent BSS as an ad hoc network

The independent BSS (IBSS) is the most basic IEEE 802.11 LAN type. The

smallest IEEE 802.11 LAN could consist of two stations. Figure 2.2 shows two IBSSs. This

modality of IEEE 802.11 operation is possible when stations are able to communicate

directly. Because this type of LAN is many times built without pre-planning, this

implementation is often referred to as an “ad hoc network”.

2 .2 .2 Distribution System Concepts

A BSS can also be part of a larger network built with multiple BSSs. The

architectural component utilized to interconnect several BSSs is the Distribution System

(DS). IEEE 802.11 separates logically the wireless medium (WM) from the Distribution

System Medium (DSM). The IEEE 802.11 LAN architecture is independent of the physical

characteristics and implementation specifications. The DS allows mobility to the devices,

purveying the necessary logical services to manage address to destination mapping and

seamless integration of multiple BSSs.

The Access Point (AP) is the station (STA) that gives access to the DS, offering

more functionalities than a simple station.

Carmen J. Martin Martin – SAPIENZA Università di Roma

26

Figure 2.3 - DS and AP

The data moves between BSS and Ds, through the AP. Every AP is also and station

and as such, an addressable entity. Both DS and BSSs allow the IEEE 802.11 to create a

wireless network of arbitrary size and complexity, or an Extended Service Set Network.

The key concept here is that an ESS network is at the same LLC (Logical Link

Control) Layer that IBSS network. The interior stations of an ESS can communicate, as

well as the mobile stations can move from a BSS to another internally on the ESS- while

being transparent to the LLC.

Figure 2.4 - ESS Structure

Carmen J. Martin Martin – SAPIENZA Università di Roma

27

In this setting, any of these are possible:

o BSSs could partially overlap.

o BSSs could be physically separated.

One or more IBSS or ESS networks could be present in the very same physical

space.

 2 .2 .3 Integration with wired LANs

To integrate IEEE 802.11 architecture with a traditional wired LAN, a logical

component needs to be introduced: a portal. The portal is a logical point through which

MSDUs originated in a non-IEEE 802.11 LAN enter the IEEE 802.11 DS. As

displayed on the figure 2.5, all data coming from the 802.xLAN enters the IEEE 802

architecture through the portal. The portal provides logical integration between IEEE

802.11 architecture and the existing wired LANs. It is possible that a device is designated as

both an AP and a portal.

Figure 2.5 - Connecting to other IEEE 802 LANs

Carmen J. Martin Martin – SAPIENZA Università di Roma

28

2 .2 .4 Logical Service Interfaces

IEEE 802.11 doesn’t explicitly specify the details of DS implementation. Instead, it

specifies the services in two categories: the station service (SS) and the distribution system

service (DSS). Both categories are utilized by the MAC sub-layer.

Services provided by stations (SS) are:

a. Authentication

b. Deauthentication

c. Privacy

d. MSDU delivery

e. DFS

f. TPC6

g. Higher layer timer synchronization (QoS facility only)

h. QoS traffic scheduling (QoS facility only)

The following are Distribution System Services (DSS):

a. Association

b. Disassociation

c. Distribution

d. Integration

e. Reassociation

f. QoS traffic scheduling (QoS facility only)

6 Transmit Power Control

Carmen J. Martin Martin – SAPIENZA Università di Roma

29

Figure 2.6 - Complete IEEE 802.11 architecture.

As Figure 2.6 illustrates, DSS are represented by arrows towards the APs, labeling

these services as used to cross media and address space logical boundaries; while SS are

represented by arrows towards stations (STAs).

 2 .3 Frame Structure

A MAC frame structure is composed by a MAC Header, a variable length frame

body and a frame check sequence (FCS). Figure 2.7 displays a frame’s general structure:

Figure 2.7 - Frame format

 There is sufficient information on the MAC header to manage fragmentation,

transmission, encryption and data being transported on the packet. The length of the header,

as well as the data, is variable and depends on the type of frame that is being transmitted. For

Carmen J. Martin Martin – SAPIENZA Università di Roma

30

this reason, the fields Address 2, 3 and 4, and Sequence Control may or may not be present.

A 32-bit Cyclic Redundancy Code (CRC) is stored in the FCS to verify the frame’s integrity.

Here’s a detailed explanation of each field that integrates the MAC Frame:

2 .3 .1 Frame Control

This field is composed of two bytes integrating the fields Protocol Version, Type,

Subtype, To DS, From DS, More Fragments, Retry, Power Management, More Data,

Protected Frame and Order. Figure 2.8 illustrates Frame Control structure.

Figure 2.8 - Frame Control field

The Protocol Version field, 2 bits in length, specifies the frame’s version of 802.11

MAC. Up until now, there is only one version and therefore the field value is 0; in the future,

we might find further versions and different values.

Type and Sub Type fields identify the type of frame that is being used. Values on this

field depend on the type of data being transmitted. Three types of frame are available:

 Control

 Management

 Data

Carmen J. Martin Martin – SAPIENZA Università di Roma

31

Each type contains subtypes. In the data frame ,the most relevant bit on the subtype

field, indicates is QoS functionalities are supported. This bit has come to be known as the

QoS subfield.

Frame types with their subtypes are displayed on tables 2.1 and 2.2.

Table 2.1 - Frames Types and Subtypes (1)

Carmen J. Martin Martin – SAPIENZA Università di Roma

32

Table 2.2 - Frames Type and Subtypes (2)

The Fields To DS and From DS indicates whether the packet is addressed to the

DS or not. The values on these fields also help determine which addresses must be situated

in the fields Address 1, 2, 3 and 4. Table 2.3 offers an interpretation of DS field’s value.

Carmen J. Martin Martin – SAPIENZA Università di Roma

33

Table 2.3 To DS and From DS subfields

The field More Fragments was designed to manage frame fragmentation. Field’s

value equals 1 when subsequent fragments of a data or management frame are expected.

Otherwise, More Fragments will equal 0.

The Retry field helps the destination device to avoid processing duplicated frames.

When Retry equals 1, the frame is a retransmission.

Since the 802.11 standard is oriented to mobile devices such as laptops and PDAs,

the Power Management field provides support for the energy consumption of these devices.

When Power Management equals 1 the transmitting device can turn to power save mode;

when the value is 0, the station is in active mode. In Access Points this value is always 0,

since these devise don’t possess energy support capabilities. However, Access Points have

the ability to store packets destined to “sleeping” devices.

The More Data field informs “sleeping” devices that they have packets awaiting

reception (More Data=1); to retrieve these, devices must send PS-Poll packets to their APs.

The Protected Frame field manages confidentiality and data authentication; when

its value is 1, it indicates that encryption has been applied to the packet and the structure is

slightly changed. The fixed value of PF is 1 for Data Frames as well as Authentication

subtype.

The security of a wireless LAN is very important, especially for applications hosting

Carmen J. Martin Martin – SAPIENZA Università di Roma

34

valuable information. For example, networks transmitting credit card numbers for

verification or storing sensitive information are definitely candidates for emphasizing

security. In these cases and others, proactively safeguard your network against security

attacks.

This standard defines two classes of security algorithms for IEEE 802.11 networks

[3]:

— Algorithms for creating and using an RSNA 7, called RSNA

algorithms

— Pre-RSNA algorithms

Pre-RSNA algorithms includes the WEP-40. This was defined as a means of

protecting (using a 40-bit key) the confidentiality of data exchanged among authorized users

of a WLAN from casual eavesdropping. The figure 2.9 depicts the basic WEP encryptions :

RC4 keystream XORed with plaintext Standard 64-bit WEP uses a 40 bit key (also known

as WEP-40), which is concatenated with a 24-bit initialization vector (IV) to form the RC4

traffic key.

Figure 2.9 - WEP procedure

Sometimes packet order is relevant to the transmission and processing costs, the

Order field takes care of this function. When its value equals one, strict packet delivery order

must be followed.

2 .3 .2 Duration/ID

This 16 bit field can be used one of three ways. Table 2.4 illustrates the possibilities.

7 Robust Security Network Association

Carmen J. Martin Martin – SAPIENZA Università di Roma

35

Table 2.4 - Duration/ID field

 To control medium access, wireless devices need to monitor packet headers and

update the NAV (Network Allocation Network). Therefore, when bit 15 in the Duration/ID

field equals 0, the value in this field indicates the time (in microseconds) in which the NAV

must be updated. For packets transmitted during Contention Free Periods (CFP) the

default actualization time is 32,768 microseconds.

For PS-Poll packets, the Duration/ID field has another interpretation, since this

packet type is used by mobile devices to retrieve their AP stored packets; AID (Association

ID) indicating the BSS to which the device belongs is obtained from the Duration/ID field.

2 .3 .3 Address

There can be up to 4 Address fields in a MAC Header; each one may serve a

different purpose depending on the frame type. Addresses are composed of 48 bits,

according to IEEE 802 standard and were designed to identify a device, group of devices or

all devices that make up a network. Addresses can be utilized for distinct finalities, as

detailed here:

 DA (Destination Address). An IEEE MAC identifier of 48

bits that denotes the MAC entity or entities that denotes the final

destination, which will manage the MSDU for protocol processing on the

higher layers.

 SA (Source Address). An IEEE MAC of 48 bits identifies

the MAC entity from which the transfer of the MSDU contained in the

Carmen J. Martin Martin – SAPIENZA Università di Roma

36

frame body field was initiated.

 RA (Receiver Address) Single our group 48 bit address that

indicates the intended immediate recipient STAs, on the WM, for the

information contained in the frame body field.

 TA (Transmitter Address). A 48 bits IEEE MAC address

identifying the station that has transmitted de 48 bits, onto the WM, the

MPDU contained in the frame body field. In order words, the wireless

device that transmitted the packet over the wireless medium.

 BSSID (Basic Service Set ID). MAC address that

enunciates the Wireless LAN to which the device has been assigned. In ad-

hoc networks, a random BSSID is generated –according to regulations on

IEEE 802- to avoid conflicts with legal MAC addresses. For networks with

infrastructure, the BSSID is the MAC address of the Access Point.

Since Address fields use depends on frame type and subtype, most frames utilize

three fields for DA, SA and BSSID. However in Data packets, field use depends on the

existing network.

2 .3 .4 Sequence Control

Sequence Control is a 16 bits field, used in the process of defragmentation that helps

eliminate packet duplication, utilizing Fragment Number and Sequence Number subfields

(illustrated in Figure 2.9).

Figure 2.10 - Sequence Control field

The subfield Fragment Number allows to control packet re-assembly, by creating a

numerical identifier (4 bits) that acquires value 0 for the first fragment and increases in a +1

for each successive fragment. This identifier remains constant in every re-transmission of

fragments.

Carmen J. Martin Martin – SAPIENZA Università di Roma

37

In the management of higher level packets on the MAC sublayer, each packet is

assigned a sequential number. This value is stored in the Sequence Number subfield (12

bits). Value assignation happens through a module 4096 counter, where the first packet is

assigned Sequence Number value 0 and subsequent packets increase +1 in value. This value

remains unaltered in re-transmissions, as do the fragments.

2 .3 .5 QoS (Quality of Service) Control Field

This is 16 bits field that identifies the TC or TS to which the frame belongs to, it also

displays information relative to the QoS. The field is present in data frames with a fixed value

of 1 (as detailed on section 3.2.1). Each QoS Control Field is composed by 5 sub-parts that

depend on the designated sender (HC or no –AP STA) and on the frame type and subtype.

Table 2.5 displays this information.

Table 2.5 - QoS Control field

2.3 .6 Frame Body

A variable length frame, it contents specific information to individual frame types

and subtypes. Maximum capacity is determined by maximum length (MSDU+ICV+IV),

where ICV (Integrity Check Value) y el IV (Initialization Vector) are subfields

corresponding to the WEP service (Section 2.3.1).

2 .3 .7 FCS

This field contains 32 bits CRC (Cyclic Redundancy Code) that verifies frame

integrity. The MAC Header and the Frame Body are used to calculate the CRC; these two

fields are commonly referred to as calculation fields.

Carmen J. Martin Martin – SAPIENZA Università di Roma

38

 The FCS is calculated using the following standard generator polynomial of degree

32:

G(x)= x 32 + x 26+ x 23 + x 16 + x 12 +x 11 +x 10 +x 8 +x 7 +x 5 +x 4 +x 2 +x 1 +1 (1.1)

 The FCS is the ones complement of the sum (module 2) of the following:

a) The remainder of xk ×(x 31+x 30+x 29+...+x2+x+1) divided (module2) by G(x),

where k is the number of bits in the calculation fields, and

b) The remainder after multiplication of the contents (treated as a polynomial) of the

calculation fields by x32 and then division by G(x).

The FCS field is transmitted commencing with the coefficient of the highest-order

term.

According to the IEEE 802.11 Standard, with the FCS value of a transmitted

packet, receiving devices can verify if the packet was altered during transmission by

comparing it to the calculated CRC. If the CRC correspond to the packet, an affirmative

acknowledgement packet in sent to the transmitting device. If the CRC does not match the

packet, waiting time will end and the transmitter will need to retransmit. In 802.11 there are

no negative acknowledgements.

2.3.8 Format for individuals frame types

In prior sections fields that define frame format have been explained; however the

presence or absence of these fields and their specifications depend on frame type and

subtype.

2.3.8.1 Control frames

The subfields composing Frame Control correspond to those displayed on Figure

2.8; the remainder of the structure depends on the specific sub-frame type being used. Here

are some examples of frame subtypes with their structures. (Please refer to the Standard for

more detailed information).

2.3.8.1.1 RTS (Request to Send)

Request to Send is represent by a MAC Header, containing the subfields Frame

Control, Duration, RA and TA, as well as the FCS field. There is no frame body in this case.

Carmen J. Martin Martin – SAPIENZA Università di Roma

39

Figure 2.11 - RTS frame structure

Duration field will depend on the presence or absence of QoS capability on the

station as well as method for medium access. The RA field of the RTS frame is the address

of the STA, on the WM, that is the intended immediate recipient of the pending directed

data or management frame.

The TA field is the address of the STA transmitting the RTS frame.

2.3.8.1.2 CTS (Clear to Send)

 Clear to Send structure is also free of Frame Body.

Figure 2.12 - CTS frame structure.

When the CTS frame follows an RTS frame, the RA field of the CTS frame is

copied from the TA field of the immediately previous RTS frame to which the CTS is a

response. When the CTS is the first frame in a frame exchange, the RA field is set to the

MAC address of the transmitter.

For all CTS frames sent in response to RTS frames, the duration value is the value

obtained from the Duration field of the immediately previous RTS frame, minus the time, in

Carmen J. Martin Martin – SAPIENZA Università di Roma

40

microseconds, required to transmit the CTS frame and its SIFS interval. If the calculated

duration includes a fractional microsecond, that value is rounded up to the next higher

integer.

Specifications for the Duration field are detailed in extent on the Standard.

2.3.8.1.3 ACK (Acknowledgment)

A very similar structure to its predecessors, the difference is that RA field is copied

from the Address 2 field of the immediately previous directed data, management,

BlockAckReq control, BlockAck control, or PS-Poll control frame.

Figure 2.13 - ACK frame structure

2.3.8.1.4 PS-Poll

In this case, in correspondence with the Duration field, we find the AID

(Association Identifier), defined as the value assigned to the STA transmitting the frame by

the AP in the association response frame that established that STA’s current association.

The BSSID is the address of the STA contained in the AP. The TA field is the

address of the STA transmitting the frame.

Figure 2.14 - PS-Poll frame structure

Carmen J. Martin Martin – SAPIENZA Università di Roma

41

2.3.8.1.5 CF-End

For the Contention Free-End format, Duration field is fixed to 0, while the RA field

is the broadcast group address and the BSSID field is the address of the STA contained in

the AP.

Figure 2.15 - CF-End frame structure

2.3.8.2 Data Frames

Data frames are illustrated in figure 2.7. The fields Address 1, 2, 3 and 4 depend on

the values To DS and From DS. These relationships are reported on Table 2.5:

Table 2.6 - Valid values for addresses field

The frame body consists of the MSDU, or a fragment thereof, and a security header

and trailer (if and only if the Protected Frame subfield in the Frame Control field is set to 1).

The frame body is null (0 octets in length) in data frames of subtype Null (no data), CF-ACK

(no data), CF-Poll (no data), and CF-Ack+CF-Poll (no data), regardless of the encoding of

the QoS subfield in the Frame Control field.

For data frames of subtype Null (no data), CF-ACK (no data), CF-Poll (no data),

and CF-Ack+CF-Poll (no data) and for the corresponding QoS data frame subtypes, the

Carmen J. Martin Martin – SAPIENZA Università di Roma

42

Frame Body field is omitted; these subtypes are used for MAC control purposes. For data

frames of subtypes Data, Data+CF-Ack, Data+CF-Poll, and Data+CF-Ack+CF+Poll and

for the corresponding four QoS data frame subtypes, the Frame Body field contains all of, or

a fragment of, an MSDU after any encapsulation for security.

Calculations for the duration field depend on factors such as utilized access method,

specifications for the calculation are provided in the standard.

2.3.8.3 Management Frames

Management Frames are structured as follows, with independence of subtypes:

Figure 2.16 - Management frame structure

 Figure 2.16 displays how Address 1 corresponds to the Destination Address (in

this case, the STAuses the contents of this field to perform the address matching for receive

decisions). Address 2 refers to the Source Address (SA) indicating the address of the STA

transmitting the frame.

On the other hand, the BSSID of the management frame is determined as follows:

a) If the STA is an AP or is associated with an AP, the BSSID is the address

currently in use by the STA contained in the AP.

b) If the STA is a member of an IBSS, the BSSID is the BSSID of the IBSS.

 The address fields for management frames do not vary by frame subtype.

Regarding the Duration field, values will depend on the method of access and the

presence or absence of QoS capability.

Frame body field will be specific to the frame subtype employed. The table displays

all Control Frame subtypes. We will explain in detail some Control Frames of interest to this

project.

Carmen J. Martin Martin – SAPIENZA Università di Roma

43

2.3.8.3.1 Beacon Frame

This frame type is relevant to us because it contains all the information about the

network. Beacon frames are transmitted periodically to announce the presence of a Wireless

LAN network. Beacon frames are transmitted by the Access Point (AP) in an infrastructure

BSS. In IBSS network beacon generation is distributed among the stations.

Tables 2.7. and 2.78 display all the components of Frame Body, such as Beacon

Interval, Timestamp (both vital for timing and synchronization) and others like Supported

rates, Frequency Hopping Parameters, Direct Sequence Parameter (that reveal

characteristics of the PHY layer).

Table 2.7 - Beacon frame body (1)

Carmen J. Martin Martin – SAPIENZA Università di Roma

44

Table 2.8 - Beacon frame body (2)

2.3.8.3.2 Association Request

Through this type of message the STA requires association to an AP. This message

contains in its frame body a series of compartments used to indicate requested or advertised

capabilities.

Carmen J. Martin Martin – SAPIENZA Università di Roma

45

Table 2.9 - Association Request frame body

2.3.8.3.3 Association Response

Once the Request is placed, the AP replies with an Association Response message

stating whether the request was accepted. If it was, it sends as a message field the AID

(Association Identifier), a 16 bits compartment that represents the STA identification. The

following tables illustrate the full Frame Body of the Association Response frame.

Table 2.10 - Association Response frame body

(1)

Carmen J. Martin Martin – SAPIENZA Università di Roma

46

Table 2.11 - Association Response frame body (2)

2.3.8.3.4 Probe Request

A station sends a probe request frame when it needs to obtain information from

another station.

Table 2.12 - Probe Request frame body

2.3.8.3.5 Probe Response

A station will respond with a probe response frame, containing capability

information, supported data rates, etc., when after it receives a probe request frame.

Carmen J. Martin Martin – SAPIENZA Università di Roma

47

Table 2.13 - Probe Response frame body

Carmen J. Martin Martin – SAPIENZA Università di Roma

48

2 .4 MAC Sublayer Functional Description

Figure 2.17 shows the architecture of the MAC sublayer, including the distributed

coordination function (DCF), the point coordination function (PCF), the hybrid

coordination function (HCF) and their coexistence in an IEEE 802.11 LAN.

Figure 2.17 - MAC architecture

2 .4.1 MAC Architecture

The basic 802.11 MAC layer uses the Distributed Coordination Function (DCF) to

share the medium between multiple stations. DCF relies on CSMA/CA (Carrier Sense

Multiple Access with Collision Avoidance) and optional 802.11 RTS/CTS to share the

medium between stations. The STA that wants to transmit needs to sense the medium to

determine is another station is transmitting, if the medium is available transmission can be

initiated. If the medium is busy, transmission is delayed until the ongoing is finished. After

wait time, the STA must select a random backoff interval and shall decrement the backoff

interval counter while the medium is idle. Refinement of the method can minimize future

Carmen J. Martin Martin – SAPIENZA Università di Roma

49

collisions, through an interchange of exchange short control frames (Request to Send-Clear

to Send).

The original 802.11 MAC defines another coordination function called the Point

Coordination Function (PCF): this is available only in "infrastructure" mode, where stations

are connected to the network through an Access Point (AP). This is a polling operation,

where Point Coordination (PC), operating as AP of the BSS exerts control as Poll master.

PCF distributes information internally to the Beacon frames to control the medium and fix

the Network Allocation Vectors (NAV) of the stations. Additionally, all frames transmitted

during PCF can use smaller Inter Frame Spaces (IFS) than they will through the DFC,

gaining priority in medium access.

Access priority provided by a PCF reflects the creation of a Contention Free (CF)

access method. Where the PC both controls frame transmission and eliminates contention

for a limited period of time.

DCF and PCF shall coexist in way in which can operate contemporaneously on the

same BSS.

Figure 2.18 - Coexistence Contention Free and Contention Period

When an HC is operating in a BSS, it may generate an alternation of CFP and CP

in the same way as a PC, using the DCF access method only during the CP. The HCF

access methods (controlled and contention-based) operate sequentially when the channel is

in CP.

The IEEE 802.11, 2007 Edition enhances the DCF and the PCF, through a new

coordination function: the Hybrid Coordination Function (HCF). This additional

coordination function is supported only on QoS network configuration must be

implemented in each QoS station. The HCF combines DCF and PCF functions with some

improvements, QoS specific mechanism and a series of sub frames that allow uniform

Carmen J. Martin Martin – SAPIENZA Università di Roma

50

interchange of sequences for transmission of QoS data during either CF or CFP.

Within the HCF, there are two methods of channel access, similar to those defined

in the legacy 802.11 MAC: HCF Controlled Channel Access (HCCA) and Enhanced

Distributed Channel Access (EDCA). Both EDCA and HCCA define Traffic Categories

(TC). For example, emails could be assigned to a low priority class, and Voice over Wireless

LAN (VoWLAN) could be assigned to a high priority class.

With EDCA (Enhanced Distributed Channel Access), high priority traffic has a

higher chance of being sent than low priority traffic: a station with high priority traffic waits a

little less before it sends its packet, on average, than a station with low priority traffic. In

addition, each priority level is assigned a Transmit Opportunity (TXOP). A TXOP is a

bounded time interval during which a station can send as many frames as possible (as long as

the duration of the transmissions does not extend beyond the maximum duration of the

TXOP). If a frame is too large to be transmitted in a single TXOP, it should be fragmented

into smaller frames. The use of TXOPs reduces the problem of low rate stations gaining an

inordinate amount of channel time in the legacy 802.11 DCF MAC. A TXOP time interval of

0 means it is limited to a single MSDU or MMPDU.

According to the IEEE 802.11 Standard, the purpose of QoS is to protect high

priority data from low priority data but there can be scenarios in which the data which

belongs to same priority needs to be protected from data of same priority. Example being

suppose a network can accommodate only 10 data calls & an eleventh call is made.

Admission Control in EDCA addresses this type of problems. The AP publishes the

available bandwidth in beacons. The clients can check the available bandwidth before

adding more traffic in the network that cannot be entertained.

Wi-Fi Multimedia (WMM) certified APs must be enabled for EDCA and TXOP.

All other enhancements of the 802.11e amendment are optional.

Instead, the HCCA (HCF (Hybrid Coordination Function) Controlled Channel

Access) works a lot like the Point Coordination Function. However, in contrast to PCF, in

which the interval between two beacon frames is divided into two periods of CFP and CP,

the HCCA allows for CFPs being initiated at almost any time during a CP. This kind of

CFP is called a Controlled Access Phase (CAP) in 802.11e. A CAP is initiated by the AP,

whenever it wants to send a frame to a station, or receive a frame from a station, in a

Carmen J. Martin Martin – SAPIENZA Università di Roma

51

contention free manner. In fact, the CFP is a CAP too. During a CAP, the Hybrid

Coordinator (HC) -- which is also the AP -- controls the access to the medium. During the

CP, all stations function in EDCA. The other difference with the PCF is that Traffic Class

(TC) and Traffic Streams (TS) are defined. This means that the HC is not limited to per-

station queuing and can provide a kind of per-session service. Also, the HC can coordinate

these streams or sessions in any fashion it chooses (not just round-robin). Moreover, the

stations give info about the lengths of their queues for each Traffic Class (TC). The HC can

use this info to give priority to one station over another, or better adjust its scheduling

mechanism. Another difference is that stations are given a TXOP: they may send multiple

packets in a row, for a given time period selected by the HC. During the CP, the HC allows

stations to send data by sending CF-Poll frames.

HCCA is generally considered the most advanced (and complex) coordination

function. With the HCCA, QoS can be configured with great precision. QoS-enabled

stations have the ability to request specific transmission parameters (data rate, jitter, etc.)

which should allow advanced applications like VoIP and video streaming to work more

effectively on a Wi-Fi network. HCCA support is not mandatory. In fact, few (if any) APs

currently available are enabled for HCCA. Nevertheless, implementing the HCCA does not

require much overhead, as it basically uses the existing DCF mechanism for channel access

(no change to DCF or EDCA operation is needed). In particular, the station side

implementation is very simple as stations only need to be able to respond to poll messages.

On the AP side, however, a scheduler and queuing mechanism is needed. Given that AP's

are already equipped better than station transceivers, this should not be a problem either.

2 .4.2 DCF

As previously explained, DCF is the fundamental MAC technique of the IEEE

802.11 based WLAN standard. DCF employs a CSMA/CA with Binary exponential backoff

algorithm. Also, all directed traffic uses immediate positive acknowledgment (ACK frame) in

those cases when retransmission is scheduled by the sender if no ACK is received.

The Carrier Sense Multiple Access (CSMA) is a probabilistic Media Access

Control (MAC) protocol in which a STA verifies the absence of other traffic before

transmitting on a shared transmission medium, such as an electrical bus, or a band of the

electromagnetic spectrum.

Carmen J. Martin Martin – SAPIENZA Università di Roma

52

"Carrier Sense" describes the fact that a transmitter listens for a carrier wave before

trying to send. That is, it tries to detect the presence of an encoded signal from another

station before attempting to transmit. If a carrier is sensed, the station waits for the

transmission in progress to finish before initiating its own transmission.

The CA functionality CA (Collision Avoidance) is modification of pure Carrier

Sense Multiple Access and decreases probability of collisions wherever those are most likely

to occur, specifically when the medium goes from busy to ideal state. This is the kind of

situation that needs a random backoff procedure to troubleshoot.

Carrier sense shall be performed through physical and virtual mechanisms. Virtual is

achieved through distribution of reservation information that indicates medium use. The

Request to Send (RTS) - Clear to Send (CTS) interchange, prior to data frame transmission

is the most common method to distribute this information to the medium. The RTS and

CTS frames contain a Duration field that defines the period of time that the medium is to be

reserved to transmit the actual data frame and the returning ACK frame. All STAs within

the reception range of either the originating STA (which transmits the RTS) or the

destination STA (which transmits the CTS) shall learn of the medium reservation. Thus, a

STA can be unable to receive from the originating STA and yet still know about the

impending use of the medium to transmit a data frame.

The RTS/CTS mechanism cannot be used for MPDUs with broadcast and

multicast immediate destination because there are multiple recipients for the RTS, and thus

potentially multiple concurrent senders of the CTS in response. The RTS/CTS mechanism

need not be used for every data frame transmission. Because the additional RTS and CTS

frames add overhead inefficiency, the mechanism is not always justified, especially for short

data frames.

A STA configured not to initiate the RTS/CTS mechanism shall still update its

virtual CS mechanism with the duration information contained in a received RTS or CTS

frame, and shall always respond to an RTS addressed to it with CTS if permitted by

medium access rules.

To support the proper operation of the RTS/CTS and the virtual CS mechanism,

all STAs shall be able to detect the RTS and CTS frames.

Virtual carrier sensing must be under control of the MAC sublayer, and related

Carmen J. Martin Martin – SAPIENZA Università di Roma

53

closely to the network allocation vector (NAV). The NAV maintains a prediction of future

traffic on the medium based on duration information that is announced in RTS/CTS frames

prior to the actual exchange of data.

Figure 2.19 - RTS-CTS procedure

STAs receiving a valid frame shall update their NAV with the information received

in the Duration field for all frames where the new NAV value is greater than the current

NAV value, except the NAV shall not be updated where the RA is equal to the receiving

STA’s MAC address. Upon receipt of a PS-Poll frame, a STA shall update its NAV settings

as appropriate under the data rate selection rules using a duration value equal to the time, in

microseconds, required to transmit one ACK frame plus one SIFS interval, but only when

the new NAV value is greater than the current NAV value. If the calculated duration

includes a fractional microsecond, that value is rounded up the next higher integer.

Figure 2.19 shows the NAVs in two stations, the longest bar corresponds to the

station that received the RTS frame and the shorter to the recipient of the CTS, length of

these vectors depends on the values on the Duration field.

2.4.2.1 Inter Frame Space (IFS)

To provide access priority levels to the medium, five types of Inter Frame Spaces are

defined:

 SIFS (Short InterFrame Space)

As shown on figure 2.20 , this is the shortest of the IFSs. It’s used to provide

Carmen J. Martin Martin – SAPIENZA Università di Roma

54

an efficient MSDU delivery mechanism. The SIFS shall be used prior to

transmission of an ACK frame, a CTS frame, the second or subsequent MPDU of a

fragment burst, and by a STA responding to any polling by the PCF. The SIFS

may also be used by a PC for any types of frames during the CFP .The SIFS is the

time from the end of the last symbol of the previous frame to the beginning of the

first symbol of the preamble of the subsequent frame as seen at the air interface.

SIFS shall be used when STAs have seized the medium and need to keep it for the

duration of the frame exchange sequence to be performed. Using the smallest gap

between transmissions within the frame exchange sequence prevents other STAs,

which are required to wait for the medium to be idle for a longer gap, from

attempting to use the medium, thus giving priority to completion of the frame

exchange sequence in progress.

Once the STA has contended for the channel, that STA shall continue to

send fragments until either all fragments of a single MSDU or MMPDU have been

sent, an acknowledgment is not received, or the STA is restricted from sending any

additional fragments due to a dwell time boundary.

 PIFS (Point InterFrame Space)

The PIFS shall be used only by STAs operating under the PCF to gain

priority access to the medium at the start of the CFP or by a STA to transmit a

Channel Switch Announcement frame. A STA using the PCF shall be allowed to

transmit CF traffic after its CS mechanism determines that the medium is idle at the

TxPIFS slot boundary.

 DIFS (DCF Interframe Space)

The DIFS shall be used by STAs operating under the DCF to transmit

data frames (MPDUs) and management frames (MMPDUs). A STA using the

DCF shall be allowed to transmit if its CS mechanism determines that the medium

is idle at the TxDIFS slot boundary after a correctly received frame, and its backoff

time has expired.

 AIFS (Arbitration Interframe Space)

The AIFS shall be used by QoS STAs to transmit all data frames

(MPDUs), all management frames (MMPDUs), and the following control frames:

PS-Poll, RTS, CTS (when not transmitted as a response to the RTS),

BlockAckReq, and BlockAck (when not transmitted as a response to the

Carmen J. Martin Martin – SAPIENZA Università di Roma

55

BlockAckReq).

 EIFS (Extended Interframe Space)

A STA’s DCF shall use EIFS before transmission, when it determines that

the medium is idle following reception of a frame for which the PHY-

RXEND.indication primitive contained an error or a frame for which the MAC

FCS value was not correct. The EIFS is defined to provide enough time for another

STA to acknowledge what was, to this STA, an incorrectly received frame before

this STA commences transmission.

The different IFSs shall be independent of the STA bit rate. The IFS timings are

defined as time gaps on the medium, and the IFS timings except AIFS are fixed for each

PHY (even in multirate-capable PHYs). The IFS values are determined from attributes

specified by the PHY.

Figure 2.20 - IFS relationships

2.4.2.2 Backoff procedure

Whenever an STA needs to initiate a MPDU or MMPUD transmission it needs to

activate the carrier sense mechanism to determine the busy/idle state of the medium. If the

medium is busy, the STA shall defer until the medium is determined to be idle without

interruption for a period of time equal to DIFS when the last frame detected on the medium

was received correctly, or after the medium is determined to be idle without interruption for

a period of time equal to EIFS when the last frame detected on the medium was not received

correctly. After this DIFS or EIFS medium idle time, the STA shall then generate a random

backoff period for an additional deferral time before transmitting, unless the backoff timer

already contains a nonzero value, in which case the selection of a random number is not

Carmen J. Martin Martin – SAPIENZA Università di Roma

56

needed and not performed. This process minimizes collisions during contention between

multiple STAs that have been deferring to the same event. Waiting time is determined

through this equation:

 Backoff Time = Random() × aSlotTime (1.2)

where:

Random() = Pseudo-random integer drawn from a uniform distribution over

the interval [0,CW].

 aSlotTime = The value of the correspondingly named PHY characteristic.

 The contention window (CW) parameter shall take an initial value of aCWmin.

Every STA shall maintain a STA short retry count (SSRC) as well as a STA long retry

count (SLRC), both of which shall take an initial value of zero. The SSRC shall be

incremented when any short retry count (SRC) associated with any MPDU of type Data is

incremented. The SLRC shall be incremented when any long retry count (LRC) associated

with any MPDU of type Data is incremented. The CW shall take the next value in the series

every time an unsuccessful attempt to transmit an MPDU causes either STA retry counter

to increment, until the CW reaches the value of aCWmax. A retry is defined as the entire

sequence of frames sent, separated by SIFS intervals, in an attempt to deliver an MPDU.

Once it reaches aCWmax, the CW shall remain at the value of aCWmax until the CW is

reset. This improves the stability of the access protocol under high-load conditions.

2.4.2.3 Basic Access

The following is an illustration of the process through which an STA determines if it

is able to transmit through the wireless medium.

Figure 2.21 - Basic Access method

Carmen J. Martin Martin – SAPIENZA Università di Roma

57

As displayed on figure 2.21, a STA may transmit a pending MPDU when it is

operating under the DCF access method, either in the absence of a PC, or in the CP of the

PCF access method, when the STA determines that the medium is idle for greater than or

equal to a DIFS period, or an EIFS period if the immediately preceding medium-busy event

was caused by detection of a frame that was not received at this STA with a correct MAC

FCS value. If, under these conditions, the medium is determined by the CS mechanism to be

busy when a STA desires to initiate the initial frame of one of the frame exchanges, exclusive

of the CF period, the random backoff procedure shall be followed.

To kick start the backoff procedure, the STA shall set its Backoff Timer to a random

backoff time using the equation shown on section 2.3.2.2. How displays the figure 2.22, all

backoff slots occur following a DIFS period during which the medium is determined to be

idle for the duration of the DIFS period, or following an EIFS period during which the

medium is determined to be idle for the duration of the EIFS period, as appropriate.

A STA performing the backoff procedure shall use the CS mechanism to determine

whether there is activity during each backoff slot. If no medium activity is indicated for the

duration of a particular backoff slot, then the backoff procedure shall decrement its backoff

time by aSlotTime.

If the medium is determined to be busy at any time during a backoff slot, then the

backoff procedure is suspended; that is, the backoff timer shall not decrement for that slot.

Transmission shall commence when the Backoff Timer reaches zero.

In the case of unsuccessful transmissions requiring acknowledgment, this backoff

procedure shall begin at the end of the ACKTimeout interval.

The effect of this procedure is that when multiple STAs are deferring and go into

random backoff, then the STA selecting the smallest backoff time using the random function

will win the contention (assuming all of the contending STAs detect the same instances of

WM activity at their respective receivers).

Carmen J. Martin Martin – SAPIENZA Università di Roma

58

Figure 2.22 - Backoff procedure

A STA that is addressed by an RTS frame shall transmit a CTS frame after a SIFS

period if the NAV at the STA receiving the RTS frame indicates that the medium is idle. If

the NAV at the STA receiving the RTS indicates the medium is not idle, that STA shall not

respond to the RTS frame. The Duration field in the CTS frame shall be the duration field

from the received RTS frame, adjusted by subtraction of aSIFSTime and the number of

microseconds required to transmit the CTS frame at a data rate determined.

Upon successful reception of a frame of a type that requires acknowledgment with

the To DS field set, an AP shall generate an ACK frame. After a successful reception of a

frame requiring acknowledgment, transmission of the ACK frame shall commence after a

SIFS period, without regard to the busy/idle state of the medium.

The basic access mechanism is illustrated at figure 2.23:

Figure 2.23 - ACK procedure

Carmen J. Martin Martin – SAPIENZA Università di Roma

59

2.4.3 PCF

Each CFP shall begin with a Beacon frame that contains a DTIM element

(Table2.8). The CFPs shall occur at a defined repetition rate, which shall be synchronized

with the beacon interval.

The PC generates CFPs at the CFP repetition interval (CFPPeriod), which is

defined as a number of DTIM intervals. The PC shall determine the CFPPeriod (depicted

as a repetition interval in the illustrations in Figure 2.24) to use from the CFPPeriod

parameter in the CF Parameter Set. This value, in units of DTIM intervals, shall be

communicated to other STAs in the BSS in the CFPPeriod field of the CF Parameter Set

element of Beacon frames. The CF Parameter Set element shall only be present in Beacon

and Probe Response frames transmitted by STAs containing an active PC.

Figure 2.24 - Timing relationships

If the CFP duration is greater than the beacon interval, the PC shall transmit

Beacon frames at the appropriate times during the CFP (subject to delay due to traffic at the

nominal times, as with all Beacon frames). The CF Parameter Set element in all Beacon

frames at the start of, or within, a CFP shall contain a non - zero value in the

CFPDurRemaining field.

The PC may terminate any CFP at or before the aCFPMaxDuration, based on

available traffic and size of the polling list. Because the transmission of any Beacon frame

may be delayed due to a medium busy condition at the TBTT, a CFP may be foreshortened

by the amount of the delay. In the case of a busy medium due to DCF traffic, the Beacon

frame shall be delayed for the time required to complete the current DCF frame exchange.

At the nominal beginning of each CFP, the PC shall sense the medium. When the

Carmen J. Martin Martin – SAPIENZA Università di Roma

60

medium is determined to be idle for one PIFS period, the PC shall transmit a Beacon frame

containing the CF Parameter Set element and a DTIM element.

 Figure 2.25 - PCF frame transfer

As illustrated on Figure 2.25, after the initial Beacon frame, the PC shall wait for one

SIFS period, and then transmit one of the following: a data frame, a CF-Poll frame, a

Data+CF-Poll frame, a management frame, or a CF-End frame. If the CFP is null, i.e., no

traffic is buffered and no polls exist to send at the PC, a CF-End frame shall be transmitted

immediately after the initial Beacon frame. If there are buffered multicast or broadcast

frames, the PC shall transmit these prior to any unicast frames.

The PC shall transmit a CF-End or CF-End +ACK frame at the end of each CFP.

STAs receiving individually addressed, error-free frames from the PC are expected

to respond after a SIFS period. If the recipient STA is not CF-Pollable, the response to

receipt of an error-free data frame shall always be an ACK frame.

Each STA, except the STA with the PC, shall preset its NAV to the

CFPMaxDuration value (obtained from the CF Parameter Set element in Beacon frames

from this PC). This setting of the NAV also reduces the risk of hidden STAs determining

the medium to be idle for a DIFS period during the CFP and possibly corrupting a

transmission in progress.

Non-CF-Pollable STAs shall acknowledge receipt of data and management frames

using ACK Control frames sent after a SIFS period. This non-CF- Pollable operation is the

same as that already employed by such STAs for DCF operation.

Carmen J. Martin Martin – SAPIENZA Università di Roma

61

When polled by the PCF (Data+CF-Poll, Data+CF-ACK+CF-Poll, CF-Poll, or

CF-ACK+CF-Poll) a CF-Pollable STA may send one data frame to any destination. Such a

frame directed to or through the PC STA shall be acknowledged by the PC, using the CF-

ACK indication (Data+CF-ACK, Data+CF-ACK+CF-Poll,

If the PC supports use of the CFP for inbound frame transfer as well as for frame

delivery, the PC shall maintain a “polling list” for use in selecting STAs that are eligible to

receive CF-Polls during CFPs. If the PC supports the use of the CFP solely for frame

delivery, the PC does not require a polling list, and shall never generate data frames with a

subtype that includes CF-Poll. The form of CF support provided by the PC is identified in

the Capability Information field of Beacon, Association Response, Reassociation Response,

and Probe Response management frames, which are sent from APs. Any such frames sent by

STAs, as in noninfrastructure networks, shall always have these bits set to 0.

The polling list is used to force the polling of CF-Pollable STAs, whether or not the

PC has pending traffic to transmit to those STAs. The polling list may be used to control the

use of Data+CF-Poll and Data+CF- ACK+CF-Poll types for transmission of data frames

being sent to CF-Pollable STAs by the PC. The polling list is a logical construct, which is

not exposed outside of the PC. A minimum set of polling list maintenance techniques are

required to ensure interoperability of arbitrary CF-Pollable STAs in BSSs controlled by

arbitrary APs with active PCs. APs may also implement additional polling list maintenance

techniques that are outside the scope of this standard.

While time remains in the CFP, all CF frames have been delivered, and all STAs on

the polling list have been polled, the PC may send data or management frames to any STAs.

A STA indicates its CF-Pollability using the CF-Pollable subfield of the Capability

Information field of Association Request and Reassociation Request frames. If a STA

desires to change the PC’s record of CF- Pollability, that STA shall perform a re-association.

During association, a CF-Pollable STA may request to be placed on the polling list, or to

never be polled, by appropriate use of bits in the Capability Information field of the Associate

Request or Reassociate Request frame, as shown in table 2.9.

2 .5 Physical Layer (PHY) service specification.

Just like the IEEE 802.11 standard includes a common Medium Access Control

Carmen J. Martin Martin – SAPIENZA Università di Roma

62

(MAC) Layer, which defines protocols that govern the operation of the wireless LAN; in

addition, 802.11 comprises several alternative physical layers that specify the transmission and

reception of 802.11 frames. Each PHY can consist of two protocols functions: the Physical

Layer Convergence Procedure (PLCP) and Physical Medium Dependent

(PMD) sub-layers. These are somewhat sophisticated terms that the standard uses to

divide the major functions that occur within the Physical Layer. The PLCP prepares 802.11

frames for transmission and directs the PMD to actually transmit signals, change radio

channels, receive signals, and so on.

The MAC layer communicates with the Physical Layer Convergence Protocol

(PLCP) sublayer via primitives (a set of “instructive commands” or “fundamental

instructions”) through a service access point (SAP). When the MAC layer instructs it to do

so, the PLCP prepares MAC protocol data units (MPDUs) for transmission. The PLCP

minimizes the dependence of the MAC layer on the PMD sublayer by mapping MPDUs

into a frame format suitable for transmission by the PMD. The PLCP also delivers

incoming frames from the wireless medium to the MAC layer.

The PLCP appends a PHY-specific preamble and header fields to the MPDU that

contain information needed by the Physical layer transmitters and receivers (Figure 2.26).

The 802.11 standard refers to this composite frame (the MPDU with an additional PLCP

preamble and header) as a PLCP protocol data unit (PPDU). The MPDU is also called

the PLCP Service Data Unit (PSDU), and is typically referred to as such when referencing

physical layer operations.

Figure 2.26 - PLCP frame format

Carmen J. Martin Martin – SAPIENZA Università di Roma

63

What follows is a description of the fields that compose the PLCP preamble and the

PLCD header:

▪ Sync. This field consists of alternating 0s and 1s, alerting the

receiver that a receivable signal is present. The receiver begins synchronizing with

the incoming signal after detecting the Sync.

▪ Start Frame Delimiter. This field is always 1111001110100000

and defines the beginning of a frame.

▪ Signal. This field identifies the data rate of the 802.11 frame, with

its binary value equal to the data rate divided by 100Kbps. For example, the field

contains the value of 00001010 for 1Mbps, 00010100 for 2Mbps, and so on. The

PLCP fields, however, are always sent at the lowest rate, which is 1Mbps. This

ensures that the receiver is initially uses the correct demodulation mechanism, which

changes with different data rates.

▪ Service. This field is always set to 00000000, and the 802.11

standard reserves it for future use.

▪ Length. This field represents the number of microseconds that it

takes to transmit the contents of the PPDU, and the receiver uses this information to

determine the end of the frame.

▪ Frame Check Sequence. In order to detect possible errors in the

Physical Layer header, the standard defines this field for containing 16-bit cyclic

redundancy check (CRC) result. The MAC Layer also performs error detection

functions on the PPDU contents as well.

PSDU. The PSDU, which stands for Physical Layer Service Data Unit, is a fancy

name that represents the contents of the PPDU .

Under the direction of the PLCP, the Physical Medium Dependent (PMD) sub-

layer provides transmission and reception of Physical layer data units between two stations

via the wireless medium. To provide this service, the PMD interfaces directly with the

wireless medium (that is, RF in the air) and provides modulation and demodulation of the

frame transmissions. The PLCP and PMD sub-layers communicate via primitives, through

Carmen J. Martin Martin – SAPIENZA Università di Roma

64

a SAP8, to govern the transmission and reception functions. This interaction is illustrated in

Figure 2.27.

Figure 2.27 - Portion of the ISO/IEC basic reference model

The general operation of the various Physical layers is very similar. To perform

PLCP functions, the 802.11 standard specifies the use of state machines. Each state machine

performs one of the following functions:

 1. Carrier Sense/Clear Channel Assessment (CS/CCA)

Carrier Sense/Clear Channel Assessment is used to determine the state of the

medium. The CS/CCA procedure is executed while the receiver is turned on and the station

is not currently receiving or transmitting a packet. The CS/CCA procedure is used for two

specific purposes: to detect the start of a network signal that can be received (CS) and to

determine whether the channel is clear prior to transmitting a packet (CCA).

 2 . Transmit (Tx)

Transmit (Tx) is used to send individual octets of the data frame. The transmit

8 Service Access Point

Carmen J. Martin Martin – SAPIENZA Università di Roma

65

procedure is invoked by the CS/CCA procedure immediately upon receiving a PHY-

TXSTART.request (TXVECTOR) from the MAC sublayer. The CSMA/CA protocol is

performed by the MAC with the PHY PLCP in the CS/CCA procedure prior to executing

the transmit procedure.

 3 . Receive (Rx)

Receive (Rx) is used to receive individual octets of the data frame. The receive

procedure is invoked by the PLCP CS/CCA procedure upon detecting a portion of the

preamble sync pattern followed by a valid SFD and PLCP Header. Although counter-

intuitive, the preamble and PLCP header are not “received”. Only the MAC frame is

“received”.

Following, a list of formats used for PSDU transmission:

The IEEE 802.11b Direct Sequence Spread Spectrum (DSSS) Physical

layer (802.11b) delivers frames at 1, 2, 5.5, and 11 Mbps rates in the 2.4 GHz ISM band. The

original 802.11 Clause 15 DSSS standard specified only 1 and 2 Mbps data rates using only

long preambles. The only coding/modulation used in 802.11 is Barker code with DBPSK (1

Mbps) and DQPSK (2 Mbps). Figure 2.28 illustrates the construction of the DSSS PPDU,

which includes a long preamble, the header, and the MPDU (PSDU) as specified in the

802.11 standard. The preamble and the header are both transmitted at 1 Mbps when using

the long preamble format. The MPDU is transmitted at the data rate specified by the

transmitting station (or access point). The preamble enables the receiver to synchronize to

the incoming signal properly before the actual content of the frame arrives. The header

provides information about the frame, and the PSDU is the MPDU the transmitting station

is sending.

The 802.11b standard further specifies rates of 5.5 and 11 Mbps, each using CCK

modulation.

Carmen J. Martin Martin – SAPIENZA Università di Roma

66

Figure 2.28 - Long preamble version’s format

The option of a short preamble was introduced in 1997, as an optional alternative,

giving the administrator two configuration options. This is an illustration of the short

version:

Figure 2.29 - Short preamble version’s format

Other PHY specifications are illustrated in next table:

Carmen J. Martin Martin – SAPIENZA Università di Roma

67

Table 2.14 - High Rate PHY characteristics

The OFDM system (IEEE 802.11a) provides a WLAN with data payload

communication capabilities of 6, 9, 12, 18, 24, 36, 48, and 54 Mb/s. The support of

transmitting and receiving at data rates of 6, 12, and 24 Mb/s is mandatory. The system uses

52 subcarriers that are modulated using binary or quadrature phase shift keying (BPSK or

QPSK) or using 16- or 64-quadrature amplitude modulation (16-QAM or 64-QAM).

Forward error correction coding (convolutional coding) is used with a coding rate of 1/2, 2/3,

or 3/4.

Carmen J. Martin Martin – SAPIENZA Università di Roma

68

The support of transmitting and receiving at data rates of 3, 6, and 12 Mb/s is

mandatory when using 10 MHz channel spacing. The half- clocked operation doubles

symbol times and clear channel assessment (CCA) times when using 10 MHz channel

spacing.

 Figure 2.30 - OFDM P LCP frame format

Another PHY specifications are illustrated in the table 2.15:

Carmen J. Martin Martin – SAPIENZA Università di Roma

69

Figure 2.15 - OFDM PHY characteristics

The Extended Rate PHY (IEEE 802.11g) works in the 2.4 GHz band (like

802.11b), but uses the same OFDM based transmission scheme as 802.11a. It operates at a

Carmen J. Martin Martin – SAPIENZA Università di Roma

70

maximum physical layer bit rate of 54 Mbit/s exclusive of forward error correction codes, or

about 22 Mbit/s average throughputs.

The ERP builds on the payload data rates of 1 and 2 Mb/s, as described in (802.11

b)that use DSSS modulation and builds on the payload data rates of 1, 2, 5.5, and 11 Mb/s, as

described(802.11 b) that use DSSS, CCK, and optional PBCC modulations. The ERP

draws to provide additional payload data rates of 6, 9, 12, 18, 24, 36, 48, and 54 Mb/s. Of

these rates, transmission and reception capability for 1, 2, 5.5, 6, 11, 12, and 24 Mb/s data rates

is mandatory.

Two additional optional ERP-PBCC modulation modes with payload data rates of

22 and 33 Mb/s are defined. An ERP-PBCC STA may implement 22 Mb/s alone or 22 and

33 Mb/s. An optional modulation mode known as DSSS-OFDM is also incorporated with

payload data rates of 6, 9, 12, 18, 24, 36, 48, and 54 Mb/s.

An ERP STA shall support three different preamble and header formats. The first is

the Long Preamble and header described in Figure 2.28.This PPDU provides

interoperability with IEEE 802.11b STAs when using the 1, 2, 5.5, and 11 Mbit/s data rates;

the optional DSSS-OFDM modulation at all OFDM rates; and the optional ERP-PBCC

modulation at all ERP- PBCC rates. The second is the Short Preamble and header

described in 2.29. The short preamble supports the rates 2, 5.5, and 11 Mbit/s as well as

DSSS-OFDM and ERP-PBCC. The third is the ERP-OFDM preamble and header. In

the case of modulations ERP-DSSS, ERP-CCK, DSSS-OFDM and ERP_PBCC, the

utilized format can be short or long preamble, as shown in figures 2.28 and 2.29. However,

under ERP-OFDM modulation on a physical level, the format corresponds to figure 2.30.

Another PHY specifications about this ERP version are illustrated next:

Carmen J. Martin Martin – SAPIENZA Università di Roma

71

Table 2.16 - ERP PHY characteristics

One important aspect is the list of WLAN channels, is the legally allowed IEEE

802.11 or more commonly Wi-Fi Wireless LAN channels.

The 802.11 workgroup currently documents use in three distinct frequency ranges,

2.4 GHz, 3.6 GHz and 4.9/5.0 GHz bands [4]. Each range is divided into multitude of

channels. Countries apply their own regulations to both the allowable channels, allowed

users and maximum power levels within these frequency ranges.

These regulations are subject to change at any time.

Carmen J. Martin Martin – SAPIENZA Università di Roma

72

About 2.4 GHz band, potential Wireless LAN uses this range (802.11b, 802.11g and

802.11n). In this band are 14 channel spaced 5 MHz apart (with the exception of a 12 MHz

spacing before Channel 14). As the protocol requires 25 MHz of channel separation, adjacent

channels overlap and will interfere with each other potential uses of this range.

Figure 2.31 - 2.4 GHz band

 The 3.6 GHz band range is documented as only being allowed as a licensed

band in the United States.

The 5 GHz frequency band offers at least 19 non-overlapping channels rather than

the 3 offered in the 2.4 GHz band. Better or worse performance with higher or lower

frequencies (channels) may be realized, depending on the environment.

Carmen J. Martin Martin – SAPIENZA Università di Roma

73

Chapter 3

PATTERN RECOGNITION BY LINEAR

CLASSIFICATION APPROACH

3.1 Pattern Recognition task

Pattern recognition is the scientific discipline whose goal is the classification of objects

into a number of categories or classes.

“The ease with which we recognize a face, computer-aided diagnosis,understand

spoken words , read handwritten characters, identify our car keys in our pocket by feel, and

decide whether an apple is ripe by its smell belies the astoundingly complex processes that

underlie these acts of pattern recognition”. [5]

The foregoing are just some examples from a much larger number of possible

applications. Of course, to achieve the final goals in all of the applications, pattern recognition

is closely linked with other scientific disciplines, such as linguistics, computer graphics,

machine vision, and database design.

Figure 3.1 shows the various stages of a complete pattern recognition system. These

consists of a sensor that gathers the observations to be classified or described, a feature

generation mechanism that computes numeric or symbolic information from the observations,

a feature selection block (selecting which type of characteristics are more adequate to describe

an object) and a classification scheme that does the actual job of classifying or describing

Carmen J. Martin Martin – SAPIENZA Università di Roma

74

observations, relying on the extracted features. The task of the system evaluation stage is to

assess the classifier’s performance.

Figure 3.1 - Basic stages envolved in the design of a classification system

The classification design is usually based on the availability of a set of patterns that

have already been classified or described. This set of patterns is termed the training set ,

and the resulting learning strategy is characterized as supervised learning. Learning can also

be unsupervised, in the sense that the system is not given an a priori labeling of patterns,

instead it itself establishes the classes based on the statistical regularities of the patterns.

The classification or description scheme usually uses one of the following

approaches: statistical (also known as decision theoretic) or syntactic (also known as

structural). Statistical pattern recognition is based on statistical characterizations of patterns,

assuming that the patterns are generated by a probabilistic system. Syntactical pattern

recognition is based on the structural interrelationships of features.

We will focus on the design of l inear c lassi f iers , regardless of the underlying

distributions describing the training data. The major advantage of linear classifiers is their

simplicity and computational attractiveness. A l inear c lassi f ier basically works by making

a classification decision based on the value of a linear combination of the features.

 Patterns

Feature

Selection

Extracti

on

Feature

Generation

System

Evaluation

Classifier

Design

Sensor

Carmen J. Martin Martin – SAPIENZA Università di Roma

75

3.2 Linear Discrimination Functions and Decision

Hyperplanes

A discriminant function [5] that is a linear combination of the components of X can

be written as:

 (3.1)

Where w= [w1,w2,……..,wd] is know as the weight vector and w0 as the threshold

.And X= [x1 ,x2 ,… xd] is a point on the decision hyperplane.

A two-category linear classifier implements the following decision rule: decide ω1 if

g(x) > 0 and ω2 if g(x) < 0. Thus, x is assigned to ω1 if the inner product wTX exceeds the

threshold −w0 and ω2 otherwise. . Figure 3.2 displays a structural design, explaining the

discriminant function implementation.

Figure 3.2 - An illustration of two-class case and decision rule

If g(x)=0, X can ordinarily be assigned to either class. The equation g(x)=0 defines

the decision surface that separates points assigned to ω1 from points assigned to ω2. When

g(x) is linear, this decision surface is a hyperplane. If X1 and X2 are both on the decision

surface, then:

Carmen J. Martin Martin – SAPIENZA Università di Roma

76

 (3.2)

Since the difference vector X1- X2 obviously lies on the decision hyperplane (for any

X1, X2), it apparent from Eq.(3.2) that the vector w is orthogonal to the decision hyperplane.

The figure 3.3 shows the corresponding geometry in two-class case:

Figue 3.3 - The linear decision boundary

The linear decision boundary H, where g(x) = wTX + w0 = 0, separates the feature

space into two half-spaces R1 (where g(x) > 0) and R2 (where g(x) < 0).

The discriminant function g(x) gives an algebraic measure of the distance from X to

the hyperplane. Perhaps the easiest way to see this is to express X as:

 (3.3)

where Xp is the normal projection of X onto H, and r is the desired algebraic

distance positive if X is on the positive side and negative if X is on the negative side. Then,

since g(Xp) = 0,

Carmen J. Martin Martin – SAPIENZA Università di Roma

77

 (3.4)

or

 (3.5)

In particular, the distance from the origin to H is given by /∥w∥. If w0 > 0 the

originis on the positive side of H, and if w0 <0 it is on the negative side. If w0 =0, then g(x)

has the homogeneous form wTX , and the hyperplane passes through the origin.

To summarize, a linear discriminant function divides the feature space by a

hyperplane decision surface. The orientation of the surface is determined by the normal

vector w and the location of the surface is determined by the bias w0. The discriminant

function g(x) is proportional to the signed distance from X to the hyperplane, with g(x) > 0

when X is on the positive side, and g(x) < 0 when x is on the negative side.

Our major concern now is to compute the unknown parameters w=

[w1,w2,……,wd] defining the decision hyperplanes. A great variety of linear classification

algorithms is available depending on whether or not these or similar conditions are verified:

separability of the classes to classify, knowledge of statistical information that identifies each

class or the context in which the classification is made, as well as others. However, the vast

majority of these algorithms follow one of the following methods of linear classification:

 Perceptron Algorithm .One of the oldest algorithms used in

machine learning. A basic requirement for the convergence is the linear separability

of the classes. With perceptron mechanism we will approach the problem as a

typical optimization task . Thus we need to adopt an appropriate cost function and

an algorithmic scheme to optimize it. To this end, we choose the perceptron cost [5]

defined as:

€

J(w) = δX
x∈Y
∑ wT X , (3.6)

where Y is the subset of the training vectors, which are misclassified by the hyper-

Carmen J. Martin Martin – SAPIENZA Università di Roma

78

plane defined by the weight vector w. The variable δx, is chosen so that δx=- 1 if X

∈ ω1 and δx= 1 if X ∈ ω2. Obviously, the sum in (3 .6) is always positive and it

becomes zero when Y becomes the empty set, that is, if there are not misclassified

vectors X. Indeed, if X ∈ ω1 and it is misclassified, then wTX + w0 < 0 and δx < 0,

and the product is positive. The result is the same for vectors originating from class

ω2.When the cost function takes its minimum value, 0, a solution has been obtained,

since all training feature vectors are correctly classified.

To derive the algorithm for the iterative minimization of the cost function,

we will adopt an iterative scheme in the spirit of the gradient descent method, that is

€

w(t +1) = w(t) − ρt

∂J(w)
∂w w=w (t)

 (3.7)

where w(t) is the weight vector estimate at the t-th iteration step, and ρt is a

sequence of positive real numbers. However, we must be careful here. This is not

defined at the points of discontinuity. From the definition in (3 .6),and at the points

where this is valid, we get:

€

∂J(w)
∂w

= δX
X∈Y
∑ X (3.8)

Substituting (3.8) into (3.7) we obtain:

€

w(t +1) = w(t) − ρt δX
X∈Y
∑ X (3.9)

The algorithm is initialized from an arbitrary weight vector w(O), and the

correction vector Σδ xX is formed using the misclassified features. The weight vector is

then corrected according to the preceding rule. This is repeated until the algorithm

converges to a solution, that is, all features are correctly classified.

Carmen J. Martin Martin – SAPIENZA Università di Roma

79

Figure 3.4 - Geometric interpretation of the perceptron algorithm

 Least Squares Methods. As we have already pointed out, the

attractiveness of linear classifiers lies in their simplicity. Thus, in many cases,

although we know that the classes are not linearly separable, we still wish to adopt a

linear classifier, despite the fact that this will lead to suboptimal performance from

the classification error probability point of view. The least squares methods goal is

to compute the corresponding weight vector under a suitable optimality criterion

[5].

In this case, the weight vector will be computed so as minimize the mean

square error (MSE) between the desired and true outputs, that is:

€

J(w) = E y − XTw
2[] ,

(3.10)

 w =arg min J(w) (3.11)

Carmen J. Martin Martin – SAPIENZA Università di Roma

80

 Mean Square Estimation Revisited. Let y , X be two random

vectors of dimensions (M x 1) and (l x 1), respectively, and assume that they are

described by the joint pdf 1 p (y ,X).The task of interest is to estimate the value of y,

given the value of X, obtained from an experiment. [5] No doubt the classification

task falls under this more general formulation.

 Support Vector Machines. More formally, a support vector machine

constructs a hyperplane or set of hyperplanes [5] in a high or infinite dimensional

space, which could be used for classification, regression or other tasks. Intuitively, a

good separation is achieved by the hyperplane that has the largest distance to the

nearest training datapoints of any class (so-called functional margin), since in

general the larger the margin the lower the generalization error of the classifier.

 Figure 3.5 - Geometric interpretation of the Support Vector Machines

3 .3 The Pocket Algorithm

The pocket algorithm is a modification of perceptron learning that makes perceptron

learning well behaved with non separable training data [6], even if that data is noisy and

1 Probability Density Function

Carmen J. Martin Martin – SAPIENZA Università di Roma

81

contradictory. Features of these algorithms include: speed -fast enough to be able to handle

large sets of training data- and scaling properties -when the number of inputs is increases-.

Non separable problems are a different story. Since no set of weights can correctly

classify all training examples, the best that can be hoped for is a set of weights that correctly

classifies as large a fraction of the training examples as possible. Such a set of weights is

called optimal.

Note that there are alternatives that do not fit the training data as well, for example

computing weights that give minimum squared error. Such alternatives are necessary for

algorithms, such as back-propagation, that require a differentiable error function.

Perceptron learning is not well behaved for non separable problems. While it will

eventually visit an optimal set of weights, it will not converge to any set of weights. Even

worse, the algorithm can go from an optimal set of weights to a worst-possible set in one

iteration, regardless of how many iterations have been taken previously. The pocket

algorithm makes perceptron learning well behaved by adding positive feedback in order to

stabilize the algorithm.

There are several variants for different classes of problems. We are focused on the

Pocket algorithm with Ratchet.

 Applicabil ity : Finite set of training examples. Examples may be repeated, noisy,

and contradictory (E k =E l , C k ≠ C l) .

 Algorithm: The basic idea of perceptron learning is to take a training example E k

, that is incorrectly classified by the current set of weights and to add E k to the current

weights if C k =1 or subtract E k from the current weights if C k = -1.

The basic idea of the pocket algorithm is to run perceptron learning while keeping

an extra set of weights "in your pocket." Whenever the perceptron weights have a longest

run of consecutive correct classifications of randomly selected training examples, these

perceptron weights replace the pocket weights.

3 .4 Stochastic Approximation and LMS

The solution of (3.10) requires the computation of the correlation matrix and cross-

correlation vector. This presupposes knowledge of the underlying distributions, which in

Carmen J. Martin Martin – SAPIENZA Università di Roma

82

general are not known. Thus, our major goal now becomes to see if it is possible to solve

(3.11) without having this statistical information available. Consider an equation of the form

E[F(Xk,w)]=0, where Xk, k=1,2,...,is a sequence of random vectors from the same

distribution, F (. , .) a function, and w the vector of the unknown parameters. Then adopt

the iterative scheme [7]:

€

w(k) = w(k −1) − ρkF(Xk,w(k −1)) (3.12)

In other words, the place of the mean value (which cannot be computed due to lack

of information) is taken by the samples of the random variables resulting from the

experiments. It turns out that under mild conditions the iterative scheme converges in

probability to the solution w of the original equation, provided that the sequence ρk satisfies

the two conditions:

€

ρk
k=1

∞

∑ →∞

ρk
2

k=1

∞

∑ < ∞

 (3.13)

Let us now return to our original problem and apply the iteration to solve (3.11) the

(3.12) becomes:

€

w(k) = w(k −1) + ρkXk(yk − Xk

Tw(k −1)) (3.14)

where (yk ,Xk) are the desired output(±1) input training sample pairs, successively

presented to the algorithm. The algorithm is know as the least mean squares (LMS) or

Widrow_Hoff algorithm. The algorithm converges asymptotically to the MSE solution.

3 .5 Sum of Error Squares Estimation

A criterion closely related to the MSE is the sum of error squares criterion defined

as [7]:

Carmen J. Martin Martin – SAPIENZA Università di Roma

83

€

J(w) = (yk
k=1

N

∑ − Xk
Tw)2 = ek

2

k=1

N

∑
 (3.15)

In other words, the errors between the desired output of the classifier (±l in the two

class case) and the true output are summed up over all the available training feature vectors,

instead of averaging them out. In this way we overcome the need for explicit knowledge of

the underlying pdf's. Minimizing (3.15)with respect to w results in:

€

Xk (yk − Xk
T w
^
)

k=1

N

∑ = 0⇒ (Xk
k=1

N

∑ Xk
T)w

^
= (Xk

k=1

N

∑ yk) (3.16)

For the sake of mathematical formulation, let us define:

 (3.17)

That is, Q is an (N x l) matrix whose rows are the available training feature vectors,

and y is a vector consisting of the corresponding desired responses. Then:

€

Xi
i=1

N

∑ Xi
T =QQT

Xi
i=1

N

∑ y =QT y
 (3.18)

Hence, Equation (3.18) can now be written as:

€

(QTQ)w
^

=QT y⇒ w
^

= (QTQ)−1QT y (3.19)

Q= = y =

y1

y2

 .

 .

yN

X11 X12 X13 . . …. X1l

X21 X22 X23 . . …… X2l

X31 X32 X33 . . ……. X3l

.

XN1 XN2 XN3 . .…XNl

XN1 XN2 XN3 . . …. XNl

X1T

X2T

 .

 .

XNT

X1T

x

Carmen J. Martin Martin – SAPIENZA Università di Roma

84

Thus, the optimal weight vector is again provided as the solution of a linear set of

equations. Matrix QTQ is known as the sample correlation matrix. Matrix Q+=(QTQ)-1 QT is

known as the pseudoinverse of Q, and it is meaningful only if QTQ is invertible, that is, Q is

of rank l. If Q is an (l×l) square and invertible matrix, then it is straightforward to see that

Q+=Q-l .In such a case the estimated weight vector is the solution of the linear system Xw=

y. If, however, there are more equations than unknowns, N > 1, as is the usual case in

pattern recognition. there is not, in general, a solution. The solution obtained by the

pseudoinverse is the vector that minimizes the sum of error squares. It is easy to show that

(under mild assumptions) the sum of error squares tends to the MSE solution for large

values of N.

3 .6 Logistic Discrimination

In logistic discrimination [7] the logarithm of the likelihood ratios is modeled via

linear function. That is,

€

ln
P(ω i X)
P(ωM X)

= wi,0 + wi
T X (3.20)

In the denominator, any class other than ωM can also be used. The unknown

parameters wi, must be chosen to ensure that probabilities add to one. That ,is:

€

P(ω iX)∑ =1 (3.21)

Combining (3.20) and (3.21), it is straightforward to see that this type of linear

modeling is equivalent to an exponential modeling of the a posteriori probabilities:

€

P(ωM X) =
1

1+ exp(wi,0 + wi
T X)∑

i =1,2,...,M −1 (3.22)

Carmen J. Martin Martin – SAPIENZA Università di Roma

85

€

P(ω i X) =
exp(wi,0 + wi

T X)
1+ exp(wi,0 + wi

T X)∑
i =1,2,...,M −1 (3.23)

To estimate the set of the unknown parameters, a maximum likelihood approach is

usually employed.

3 .7 Multi-Class Case

It often becomes necessary to classify by differentiation amongst more than two

classes. Generalization in this cases turns into a complex matter. A linear discriminator

function is defined for each one of the classes, taking the following form: ωi, i=1,2,…M. A

feature vector (in the(l+1)-dimensional space to account for the threshold) is classified in ωi

class if:

€

wi
T X > wj

T X ∀ j≠i (3.24)

Here we describe plausible strategies to classify in such cases [5]:

 Building M linear classifiers by solving ωi, /not ωi, dichotomies (Linear

Machine)

Figure 3.6 - Linear decision boundaries for a four-class problem. ωi/not ωi

dichotomies

Carmen J. Martin Martin – SAPIENZA Università di Roma

86

 Use M(M − 1)/2 perceptrons: one for every pair ωi/ωj, dichotomies

Figure 3.7 - Linear decision boundaries for a four-class problem. ωi /ωj dichotomies

and the corresponding decision boundaries Hij.

Regardless of the classification algorithm in use, a linear machine can be

implemented using c linear neurons, one for each category and each one with the

corresponding decision hyperplane gi(X). Assigning X to ùi if :

€

gi(X) > gj(X) ∀ j≠I (3.25)

A linear machine divides the feature space into M decision regions, with gi(X) being

the largest discriminant if X is in region Ri.

We can transform the linear machine learning problem to that of learning a single

perceptron by using the Kesler’s construction [7].

In this case, we will perform an expansion of feature’s space, following these steps:

Carmen J. Martin Martin – SAPIENZA Università di Roma

87

1. For each training vector of the ωi class, (M-1) vectors are built in this

manner

€

Xij = [0T ,0T ,...,XT ,...− XT ,...,0T]T with dimensions

€

(l +1)M ×1. These vectors

contain zero blocks, except in the cells i,j occupied by XT and -XT ,respectively, ∀j ≠i.

2. We build the vector block

€

w = [w1T ,w2
T ,...wM

T]T .

3. If X

€

∈ ωi , that implies

€

wT Xij > 0,∀j =1,2,....M, j ≠ i .

The objective now is to design a linear classifier in the extended

€

(l +1)M ×1dimensional space, in such way that everyone of the

€

(M −1) × N vectors lies on

its positive side.

Carmen J. Martin Martin – SAPIENZA Università di Roma

88

Chapter 4

PACKET CLASSIFIER

4.1 Generalized Classif ication Approach

We started by designing a generic linear classifier that was able to distinguish

amongst C classes, each class being characterized by M features. In general, a linear classifier

divides the feature space into C regions; this division comes about through calculation of a

decision hyperplane that characterize the region of the space where each class is located:

€

gj(x) = w0, j + wi , j xi
i=1

M

∑ , j = 1, 2, ..,C ,
 (4.1)

where w = w0 ,w1,......,wM[] as explained in the previous chapter is known as the weight

vector, and X = x1, x2 ,....., xM[] is a point on the decision hyperplane.

The classifier’s objective is to find each discrimination function, and generate a

decision using the major score criterion. This score represents a measure of similarity

between the object and each class. The classification module was implemented on

MATLAB, using four of the classification methods described on Chapter 3, selected

because of their simplicity and computational appeal: Pocket, Perceptron, LMS and SOE.

Each one of these methods provides a decision concerning classification and a

geometrical interpretation of the job of discriminating amongst classes.

Carmen J. Martin Martin – SAPIENZA Università di Roma

89

To begin with, features of each class are defined through their distribution

probability functions, the algorithm foresees to work with features that follow distribution of

these types: Normal, Rayleigh or Uniform; using training vectors that conform the

characterization of each class. Once the training set for each class is defined, it is utilized for

the construction of each classifier –regardless of the algorithm being developed.

Figures 4.1 and 4.2 illustrate examples of characterization of the 3 features that define

each class, in a 2-Classes case (C=2, M=3). Figure 4.1 represents characterization for class 1:

o Feature 1: Uniform Distribution, U (1,2)

o Feature 2: Normal Distribution, N (2,0.64)

o Feature 3: Uniform Distribution U (1,5)

 Figure 4.1 - Example of Characterization Stage (Class 1)

On the other hand, class 2 is characterized this way:

o Feature 1: Uniform Distribution, U (2,3)

o Feature 2: Rayleigh Distribution, Rayleigh (0.16)

o Feature 3: Uniform Distribution, U (6,11)

Carmen J. Martin Martin – SAPIENZA Università di Roma

90

The following figure presents a graphic interpretation of this characterization:

Figure 4.2 - Example of Characterization Stage (Class 2)

Once characterization of the classes through definition of each feature is

accomplished, training vectors representing each class are built; where every vector has 3

components , with the values that correspond to each feature.

The following figure represents the corresponding features space:

Carmen J. Martin Martin – SAPIENZA Università di Roma

91

Figure 4.3 - Training Set Example (C=2, M=3)

For each of the implemented algorithms, a plane is built in which features space is

divided in two regions; for the Perceptron algorithm’s case, separation is illustrated as

follows:

Figure 4.4 - Decision Plane according to Perceptron Algorithm

Carmen J. Martin Martin – SAPIENZA Università di Roma

92

The solution for the Pocket Algorithm’s case will look this:

Figure 4.5 - Decision Plane according to Pocket Algorithm

The Figure 4.6 displays the LMS algorithm’s decisions plane:

Figure 4.6 - Decision Plane according to LMS Algorithm

Carmen J. Martin Martin – SAPIENZA Università di Roma

93

Finally, the SOE algorithm also displays a graphic interpretation of the calculated

discriminant function:

Figure 4.7 - Discriminant Function according to SOE Algorithm

4.2 Feature Selection

As explained on section 1.3, this work is oriented towards developing a module that

can achieve automatic recognition of technologies and interference operating over the ISM

bands, specifically in the 2.4 GHz band. This classification block is one of the cornerstones of

the AIR-AWARE Project. The project’s objective is to create a black box — the AIR-

AWARE module — capable of classifying technologies, as well as different types of

interference in play [8].

Carmen J. Martin Martin – SAPIENZA Università di Roma

94

Figure 4.8 - The AIR-AWARE module

As figure 4.8 displays, a beginning block consists of a device capable of spectrum

sensing, with a good time resolution (in the µsec order). This device is not in capacity to

demodulate or decode, but it is able to provide reliable information about presence or

absence of energy over time. The design of this block is outside the realm of this project,

however the following figure show two types of implementation of an Energy Detector: the

first a Conventional energy detector [9], consisting of a low pass filter to reject out of band

noise and adjacent signals, Nyquist sampling A/D converter, square-law device and

integrator (Figure 4.9 (a)).

Figure 4.9 - Energy Detector

In contrast, figure b represents an alternative approach which could be devised by

using a periodogram to estimate the spectrum via squared magnitude of the FFT.

The next block of the AIR-AWARE module is feature extraction stage. To achieve

Carmen J. Martin Martin – SAPIENZA Università di Roma

95

recognition of technologies, a set of features should be defined; this means, each pattern to

classify must be translated to a vector that contains the appropriate characterizing features.

Feature selection depends upon the fundamental characteristics of the classes to classify; a

good candidate will be a characteristic with great discriminatory power between classes.

This study is focused on 802.11 (Wi-Fi) and 802.15.1 (Bluetooth) network recognition.

Previous work, as [1], has addressed a similar problem, by classifying Wi-Fi vs. Bluetooth,

using a spectrum sensing procedure based on distributed detection theory. The present

work extends beyond previous investigations by considering Wi-Fi real traffic captures, and

by focusing feature extraction and classification on MAC sublayer characteristics, leading to

simplicity and computational efficiency.

The selection of features phase was took over in [10] through extensive analysis of

MAC sublayer communication procedures based on real Wi-Fi traffic, where the main goal

was to identify MAC sublayer [1,2] specific features for each of the above technologies and,

through these, achieve differentiation.

The automatic recognition approach proposed on this work is based on the

utilization of two features: the SIFS, with high discriminatory richness [10] and the

Maximum Packet Duration between two silence Gaps.

The first feature is the time interval between PPDUs, defined in Section 2.3 as Short

Inter Frame Space. Of all existing IFS types, SIFS has a nominal value of 10µs for the ISM

2.4GHz band, and is the likely to occur in a scenario with medium to high traffic; it is usually

used by a node responding to any polling, and always prior to: a) transmission of an ACK

frame; b) a CTS frame; c) a second or subsequent PPDU of a fragment burst.

The second proposed feature is the duration of the longest packet considering all the

packets between two consecutive silence gaps, previously considered as SIFS.

Note that both proposed features are extremely simple and easy to extract by using

the simplest hardware: an energy detector.

Once features are selected: Duration of Silence Gaps (feature 1) and Maximum

Packet Duration between two Silence Gaps (feature 2); the module Feature Extraction must

be able to extract each of these parameters in any sequence of packets at its input. From here,

every packet sequence is translated into a set of point on a bidimensional plane with

Carmen J. Martin Martin – SAPIENZA Università di Roma

96

coordinates [x,y], where the x axis represents the Duration of Silence Gaps and the y axis

represents the Maximum Packet Duration between two Silence Gaps.

4.3 Experimentation

4.3 .1 Training Set Construction

As detailed in Chapter 3, before implementation of any linear classification algorithm

is possible, a strong set of characteristic vectors for each class is necessary: a training set.

Before anything else, to achieve Wi-Fi vs. Bluetooth recognition:

 Wi-Fi real traffic was utilized.

 Bluetooth traffic was simulated considering [12] the case of

a Piconet with two devices in connection state (one master and one slave).

Data packets sent by the master can occupy 1, 3 or 5 time slots (where the

time slot is 625µs), according to their length, whereas acknowledgement

packets (NULL packets, with a fixed length of 126 bits) occupy 1 time slot.

The duration of the remaining 30% is uniformly distributed between

minimum and maximum values (see Table I).According to the standard, for

every packet arrival time a jitter of ± 10µs has been set, to consider imperfect

synchronization between the two devices. According to [12] the jitter was

modeled by a Gaussian distribution with zero mean and standard deviation

s=10/3µs.

To enhance variability in the generation of this packet sequence, two

different scenarios were considered on the first one, 100% of transmitted

packets occupy just one Time Slot; whereas the second scenario represents

higher variability with 80% of the packets occupying 1 Time Slot, while 15%

represent 3 Time Slot duration and 5% occupy % Time Slots. In every

scenario, 70 % of the data packets have a duration that is fixed by the

protocol [11].The duration of the remaining 30% is uniformly distributed

between minimum and maximum values [12].

Carmen J. Martin Martin – SAPIENZA Università di Roma

97

 Fixed duration Min. Duration Max. Duration

Time slot 625µs

1 -t ime-slot packet 126µs 366µs

3-t ime-slot packet 1250µs 1622µs

5-t ime-slot packet 2500µs 2870µs

NULL packet 126µs

Table 4.1 - Bluetooth Standard Specifications

For the construction of the training set that characterizes each class, six 1000-packet

captures for Wi-Fi and two 6000-packet MATLAB simulated Bluetooth captures –single

slot or multi slot for each scenario- were utilized. Each capture was translated into a set of

points (2093 points) after the feature extraction stage. This sets were then located on a

bidimensional space, reflecting characteristic regions of each class on the plane. The

following figures illustrate the respective training sets, for the Bluetooth multi slot and single

slot communications cases.

Figure 4.10 - Features Plane with Single-Slot Communication at Bluetooth Class

Carmen J. Martin Martin – SAPIENZA Università di Roma

98

Because in Figure 4.10 represents the Bluetooth single-slot case, the corresponding

training set for the Bluetooth class displays lower variability and therefore lower dispersion

amongst the points that constitute that class; this in turn favors separability of the classes to

classify.

Figure 4.11 - Data Point Density Histogram with Single-Slot Communication at

Bluetooth Class

Through Figure 4.11, we are able to verify how the high density of points

corresponding to the Wi-Fi class have a Silence Gaps duration around 10 µsec; whereas for

the Bluetooth class, in the single slot scenario, duration of silence gaps fluctuates between

200 and 400 µsec, while maximum packet duration remains always lower than 500 µsec.

However, the following figure, representing the multi-slot case, presents a less

restricted training set behavior. In fact the presence of a few Wi-Fi points invading the

Bluetooth “zone” becomes noticeable. Nonetheless, capture file revision indicated that these

corresponded to non-SIFS, i.e. erroneously estimated SIFS. In any case, these points were

less than 1% of total.

Carmen J. Martin Martin – SAPIENZA Università di Roma

99

Figure 4.12 - Features Plane with Multi-Slot Communication at Bluetooth Class

The next figure presents a data point density histogram, useful to comprehend

further the distribution of these points and their proportion in respect to the training set.

Figure 4.13 - Data Point Density Histogram with Multi-Slot Communication at

Bluetooth Class.

Carmen J. Martin Martin – SAPIENZA Università di Roma

100

Afterwards, when training sets were defined, each of the chosen classification

algorithms was implemented: Pocket, Perceptron, LMS and SOE. Graphic interpretation

of each the algorithms is presented as follows, differentiating between the single slot and

multi slot cases.

Figure 4.14 Automatic classification of Wi-Fi vs. Bluetooth Single-Slot

Figure 4.15 Automatic classification of Wi-Fi vs. Bluetooth Multi-Slot.

Carmen J. Martin Martin – SAPIENZA Università di Roma

101

It becomes evident –when confronting the single and multi slot scenarios- that due to

the separability of the classes present on the first scenario all methods reach convergence and

therefore all training vectors- each corresponding to a class- are classified correctly. On the

contrary, the second scenario presents a much more complex set to classify –due to the scarce

separability of the classes- in this case the utilized classification method classifies erroneously

a percentage of the points. The following table presents the error percentages of each

algorithm:

 % Wi-Fi vectors

erroneous

% Bluetooth vectors

erroneous

Pocket

1%

[22/2192]

0%

[0/2192]

Perceptron

1%

[22/2192]

0.32%

[7/2192]

LMS

0.5%

[11/2192]

31.75%

[696/2192]

SOE

0.5%

[11/2192]

26.27%

[576/2192]

Table 4.2 Percentage of Error over the Training Set for each algorithm -Wi-Fi and

Bluetooth Multi-slot Communication Class-.

To add fortitude to the classification and analyze the percentage of classification

errors in regards to the number of training vectors, a second strategy with a higher number of

training vectors was utilized. For the Wi-Fi case, seventeen (16) 1000-packet captures were

utilized. For the Bluetooth case, simulated MATLAB captures consisted in two 20000-

packet sequences corresponding to either single slot or multi slot cases. In this case, features

space is boarded by a higher quantity of points (in order to 9000). Following, an illustration

of the respective features space, for each Bluetooth scenario considered:

Carmen J. Martin Martin – SAPIENZA Università di Roma

102

Figure 4.16 - Features Plane with Single-Slot Communication at Bluetooth Class

(double dimension training)

Figure 4.17 - Data Point Density Histogram with Single-Slot Communication at

Bluetooth Class. (double dimension training)

Carmen J. Martin Martin – SAPIENZA Università di Roma

103

The resulting training set for the Multi-Slot case:

Figure 4.18 - Features Plane with Multi-Slot Communication at Bluetooth Class

(double dimension training)

The corresponding data point density is displayed as follows:

Figure 4.19 - Data Point Density Histogram with Multi-Slot Communication at

Bluetooth Class (double dimension training)

Carmen J. Martin Martin – SAPIENZA Università di Roma

104

The following figures illustrates the implementations of the classification algorithms,

in this considering a training set of broader dimensions.

Figure 4.20 - Automatic classification of Wi-Fi vs. Bluetooth Single-Slot

(double dimension training)

Figure 4.21 - Automatic classification of Wi-Fi vs. Bluetooth Multi-Slot

(double dimension training)

Carmen J. Martin Martin – SAPIENZA Università di Roma

105

Again, separability of the classes favors convergence of the classification algorithms

on the first scenario; while hurdling complete separation of the training vectors in the second

scenario, resulting in the following percentages of error per each algorithm:

 % Wi-Fi vectors

erroneous

% Bluetooth vectors

erroneous

Pocket

1.23%

[53/4294]

0.02%

[1/4294]

Perceptron

1.56%

[67/4294]

0%

[0/4294]

LMS

0.63%

[27/4294]

31.8%

[1366/4294]

SOE

0.79%

[34/4294]

8.17%

[351/4294]

Table 4.3 - Percentage of Error for each algorithm over the Training Set Wi-Fi and

Bluetooth Multi-slot Communication Class. (Double dimension training)

4.3 .2 Classif ication Results

In order to test each of them, the implemented classifiers were then applied to data

not belonging to the training sets, i.e. a new 1000-packet Wi-Fi capture (1.4 seconds capture

duration), and two new 1000-packets Bluetooth simulations (Scenarios 1 and 2) were

generated (each around 0.7 seconds long). Results of classification percentage of Wi-Fi vs.

Bluetooth (single-slot case), when the input to the classifier is formed by either Wi-Fi

captures or Bluetooth sequences of packets are reported in Tables II and III, for the single

vs. multi-slot Bluetooth, respectively.

Carmen J. Martin Martin – SAPIENZA Università di Roma

106

It bears weight, as explained before, that each sequence to classify is first processed

by the feature extraction block, and therefore translated into sets of points onto the features

space; where the utilized sequences correspond to 352 points for the Wi-Fi case (1000

packets), and 456 points for the Bluetooth case. Percentages on the subsequent tables are

based on this number of points, where for each case (being the input either Wi-Fi or

Bluetooth), and according to each algorithm, the percentage of points distinguished as

belonging to either of the classes is reflected.

 Classifier Input Network Classification

into Wi-Fi

Classification

into single-slot Bluetooth

Pocket Bluetooth 0% [0/456] 100% [456/456]

Pocket Wi-Fi 100% [352/352] 0% [0/352]

Perceptron Bluetooth 0% [0/456] 100% [456/456]

Perceptron Wi-Fi 100% [352/352] 0% [0/352]

LMS Bluetooth 0% [0/456] 100% [456/456]

LMS Wi-Fi 100% [352/352] 0% [0/352]

SOE Bluetooth 0% [0/456] 100% [456/456]

SOE Wi-Fi 100% [352/352] 0% [0/352]

Table 4.4 - Classification results with single-slot Communications at Bluetooth

class.

The results of automatic classification considering the second Bluetooth scenario

Multi –Slot are display on the following Table.

Carmen J. Martin Martin – SAPIENZA Università di Roma

107

 Classifier Input Network Classification

into Wi-Fi

Classification

 into multi-slot Bluetooth

Pocket Bluetooth 0% [0/462] 100% [462/462]

Pocket Wi-Fi 98.86% [348/352] 1.14% [4/352]

Perceptron Bluetooth 0.43% [2/462] 99.57% [460/462]

Perceptron Wi-Fi 98.86% [348/352] 1.14% [4/352]

LMS Bluetooth 34.85% [161/462] 65.15% [301/462]

LMS Wi-Fi 99.43% [350/352] 0.57% [2/352]

SOE Bluetooth 29.87% [138/462] 70.13% [324/462]

SOE Wi-Fi 99.72% [351/352] 0.28% [1/352]

Table 4.5 - Classification results with multi-slot Communications at Bluetooth class

It became interesting to study how automatic recognition will operate when the

input was a mixed flow (multi-network environment). Given that the Wi-Fi capture is on real

traffic, while the Bluetooth streams were simulated, the mixture could be controlled by

software. In particular, three different mixes were generated:

1. pre-dominant Wi-Fi (1000 Wi-Fi packets vs. 200 Bluetooth

packets);

2. balanced (1000 Wi-Fi packets vs. 1000 Bluetooth packets);

3. Bluetooth pre-dominant (1000 Wi-Fi vs. 2000 Bluetooth

packets).

Carmen J. Martin Martin – SAPIENZA Università di Roma

108

The same considerations where applied to the single and multi slot Bluetooth

scenarios, obtaining the results shown as follows:

Input Network Classification

 into Wi-Fi

Classification

 into single-slot Bluetooth

Pocket Bluetooth pre-dominant 38.32% [292/762] 61.68% [470/762]

Pocket Wi-Fi pre-dominant 86.45% [351/406] 13.55% [55/406]

Pocket Balanced 58.21% [303/520] 41.79% [217/520]

Perceptron Bluetooth pre-dominant 38.45% [293/762] 61.55% [469/762]

Perceptron Wi-Fi pre-dominant 86.7% [352/406] 13.3% [54/406]

Perceptron Balanced 57.83% [301/520] 42.17% [219/520]

LMS Bluetooth pre-dominant 38.32% [292/762] 61.68% [470/762]

LMS Wi-Fi pre-dominant 86.45% [351/406] 13.55% [55/406]

LMS Balanced 58.21% [303/520] 41.79% [217/520]

SOE Bluetooth pre-dominant 38.58% [294/762] 61.42% [468/762]

SOE Wi-Fi pre-dominant 86.70% [352/406] 13.3% [54/406]

SOE Balanced 58.21% [303/520] 41.79% [217/520]

Table 4.6 - Classification results with single-slot Communications at Bluetooth

class. (Mixed Input)

Carmen J. Martin Martin – SAPIENZA Università di Roma

109

Input Network Classification into Wi-Fi Classification into multi-slot Bluetooth

 Pocket Bluetooth pre-dominant 17.10% [133/778] 82.90% [645/778]

Pocket Wi-Fi pre-dominant 86.07% [315/366] 13.93% [51/366]

Pocket Balanced 41.34% [210/508] 58.66% [298/508]

Perceptron Bluetooth pre-dominant 17.22% [134/778] 82.78% [644/778]

Perceptron Wi-Fi pre-dominant 86.07% [315/366] 13.93% [51/366]

Perceptron Balanced 41.53% [211/508] 58.47% [297/508]

LMS Bluetooth pre-dominant 37.79% [294/778] 62.21% [484/778]

LMS Wi-Fi pre-dominant 90.16% [330/366] 9.84% [36/366]

LMS Balanced 56.89% [289/508] 43.11% [219/508]

SOE Bluetooth pre-dominant 36.89% [287/778] 63.11% [491/778]

SOE Wi-Fi pre-dominant 90.71% [332/366] 9.29% [34/366]

SOE Balanced 56.10% [285/508] 43.90% [223/508]

Table 4.7 - Classification results with multi-slot Communications at Bluetooth

class. (Mixed Input)

Also, results from classification are reflected, related to a training set of higher

dimension (approximately double in size). In order to test the classification algorithms a

1000-packet Wi-Fi capture and 2 relative sequences of 1000 Bluetooth packets were utilized –

in both single-slot and multi-slot cases-.

Carmen J. Martin Martin – SAPIENZA Università di Roma

110

 Classifier Input Network Classification into Wi-Fi Classification into single-slot Bluetooth

Pocket Bluetooth 0% [0/440] 100% [440/440]

Pocket Wi-Fi 100% [355/355] 0% [0/355]

Perceptron Bluetooth 0% [0/440] 100% [440/440]

Perceptron Wi-Fi 100% [355/355] 0% [0/355]

LMS Bluetooth 0% [0/440] 100% [440/440]

LMS Wi-Fi 100% [355/355] 0% [0/355]

SOE Bluetooth 0% [0/440] 100% [440/440]

SOE Wi-Fi 100% [355/355] 0% [0/355]

Table 4.8 - Classification results with single-slot Communications at

Bluetooth class. (Double dimension training)

The results of automatic classification considering the Bluetooth scenario multi slot are:

 Classifier Input Network Classification into Wi-Fi Classification into multi-slot Bluetooth

Pocket Bluetooth 0% [0/447] 100% [447/447]

Pocket Wi-Fi 98.59% [350/355] 1.41% [5/355]

Perceptron Bluetooth 0% [0/447] 100% [447/447]

Perceptron Wi-Fi 98.31% [349/355] 1.69% [6/355]

LMS Bluetooth 33.3% [149/447] 66.67% [298/447]

LMS Wi-Fi 99.44% [353/355] 0.56% [2/355]

SOE Bluetooth 8.73% [39/447] 91.28% [408/447]

SOE Wi-Fi 98.87% [351/355] 1.13% [4/355]

Table 4.9 - Classification results with multi -slot Communications at Bluetooth class

(Double dimension training)

Carmen J. Martin Martin – SAPIENZA Università di Roma

111

In much the same way, with the goal of analyzing the performance of the classifier

when training set dimension varies, a simulation of mixed packet flow was generated

(simulated multi-network environment); the considerations of this generation match those of

the previous case.

Results of the single-slot and multi-slot cases are displayed in the following tables.

Input Network Classification

into Wi-Fi

Classification

into single-slot Bluetooth

 Pocket Bluetooth pre-dominant 36.72% [282/768] 63.28% [486/768]

Pocket Wi-Fi pre-dominant 86.52% [353/408] 13.48% [55/408]

Pocket Balanced 57.14% [324/567] 42.86% [243/567]

Perceptron Bluetooth pre-dominant 36.07% [277/768] 63.93% [491/768]

Perceptron Wi-Fi pre-dominant 86.03% [351/408] 13.97% [57/408]

Perceptron Balanced 56.97% [323/567] 43.03% [244/567]

LMS Bluetooth pre-dominant 36.46% [280/768] 63.54% [488/768]

LMS Wi-Fi pre-dominant 86.27% [352/408] 13.73% [56/408]

LMS Balanced 57.14% [324/567] 42.88% [243/567]

SOE Bluetooth pre-dominant 36.71% [282/768] 63.28% [486/768]

SOE Wi-Fi pre-dominant 86.52% [353/408] 13.48% [55/408]

SOE Balanced 57.14% [324/567] 42.88% [243/567]

Table 4.10 - Classification results with single-slot Communications at Bluetooth

class. (Mixed) (Double dimension training)

Carmen J. Martin Martin – SAPIENZA Università di Roma

112

Input Network Classification

 into Wi-Fi

Classification

 into multi-slot Bluetooth

 Pocket Bluetooth pre-dominant 17.35% [136/784] 82.65% [648/784]

Pocket Wi-Fi pre-dominant 82.25% [329/400] 17.75% [71/400]

Pocket Balanced 42.09% [213/506] 57.91% [293/506]

 Perceptron Bluetooth pre-dominant 16.45% [129/784] 83.55% [655/784]

Perceptron Wi-Fi pre-dominant 82.25% [329/400] 17.75% [71/400]

Perceptron Balanced 41.3% [209/506] 58.7% [297/506]

LMS Bluetooth pre-dominant 40.05% [314/784] 59.95% [470/784]

LMS Wi-Fi pre-dominant 86.25% [346/400] 13.75% [55/400]

LMS Balanced 60.87% [308/506] 39.13% [198/506]

SOE Bluetooth pre-dominant 22.70% [178/784] 77.30% [606/784]

SOE Wi-Fi pre-dominant 83.75% [335/400] 16.25% [65/400]

SOE Balanced 47.23% [239/506] 52.77% [267/506]

Table 4.11 Classification results with multi-slot Communications at Bluetooth class.

(Mixed) (Double dimension training)

Carmen J. Martin Martin – SAPIENZA Università di Roma

113

Conclusions and Future Work

As described in the above Section, network classification of Wi-Fi vs. Bluetooth was

attempted based on the definition of two features: the maximum packet duration between

two silence gaps, and duration of silence gaps. Four different classification algorithms were

used: Pocket, Perceptron, LMS, and SOE. We were able to conclude the following from the

results obtained during the experimentation stage:

1. For the Wi-Fi vs. single-slot Bluetooth case all proposed classifiers achieved perfect

classification into the two classes, when one traffic stream (either Wi-Fi or Bluetooth) was

given as input to the classifier. This result shows that the selected features were appropriate

since they completely identify these two classes.

2. For the Wi-Fi vs. multi-slot Bluetooth case, classification is not as perfect as in the

previous case, and depends upon classification algorithm as well as input data to the

classifier. Among all the proposed classification strategies, Pocket and Perceptron emerge as

the most successful and reliable, leading to a classification rate greater than 98%.

3. For the mixed flow experimentation, results point out the adequacy of the classifiers

in environments with heavy predominance of one technology, by their ability to reveal both

technologies in each case. This ability is shown by comparing results from the single-slot and

multi-slot cases. We were able to determine that only the Pocket and Perceptron algorithms

are capable of performing a reliable classification. Results point out to plausible

detection when both technologies are present simultaneously. To improve accuracy of

decision, post processing will be required .

Future work could focus on investigating whether the selected features extend

beyond the present case of two technologies in the ISM band. In particular, the AIR-

AWARE project will proceed by incorporating the IEEE 802.15.4 technology (ZigBee) into

the set of possible classes. Preliminary investigations, based on the analysis of the 802.15.4

standard specifications, show that SIFS is also defined for ZigBee networks, with a nominal

value of 192µs [16] in the ISM 2.4 GHZ band. This value compared to extracted features on

Carmen J. Martin Martin – SAPIENZA Università di Roma

114

this paper experiments, should allow the classification algorithms to obtain good separation

for all three classes (Wi-Fi vs. Bluetooth vs. ZigBee).

Carmen J. Martin Martin – SAPIENZA Università di Roma

115

References

[1] Gandetto M. and Regazzoni C., “Spectrum Sensing: A Dsitributed

Approach for Cognitive Terminals,” IEEE Journal on selected areas in

communications, Vol.25 (3), 2007.

[2] http://it.wikipedia.org/wiki/Wireless_Local_Area_Network.

[3] IEEE Std 802.11 – 2007, IEEE Standard for Information technology –

Telecommunications and information exchange between systems – Local

and metropolitan area networks – Specific requirements – Part 11: Wireless

LAN Medium Access Control (MAC) and Physical Layer (PHY)

Specifications, 12 June 2007.

 [4] http://en.wikipedia.org/wiki/ISM_band.

 [5] Duda R.O., Hart P. E., and Stork D.G., Pattern classification, 2° Ed.,

Wiley-Interscience, 2004.

 [6] Gallant S. I., Perceptron-Based Learning Algorithms, IEEE Transactions

on neural networks, Vol. 1(2), 1990.

 [7] Theodoridis S. and Koutroumbas K., Pattern recognition, 4° Ed., Elsevier

Inc., 2009.

 [8] Di Benedetto M.G, Boldrini S., Martin Martin C.J, Roldan Diaz. J. .

Automatic network recognition by feature extraction: a case study in the

ISM band. Accepted for publication in Proceedings of the 5th International

Conference on Cognitive Radio Oriented Wireless Networks and

Communications, Special Session on Cognitive Radio and Networking for

Cooperative Coexistence of Heterogeneous Wireless Networks, June 9-11

2010, Cannes, France.

[9] Cabric D., Tkachenko A. and Brodersen R.. “Experimental Study of

Spectrum Sensing based on Energy Detection and Network Cooperation”,

in TAPAS 2006.

Carmen J. Martin Martin – SAPIENZA Università di Roma

116

[10] Roldán Jesus. “ Cognitive Networking: Network Sensing with Application

to IEEE 802.11 Communication Systems”. M.S degree in

Telecommunication Engineering, Sapienza Università di Roma, 12 April

2010.

[11] IEEE Std 802.15.1 – 2005, IEEE Standard for Information technology –

Telecommunications and information exchange between systems – Local

and metropolitan area networks – Specific requirements – Part 15.1: Wireless

medium access control (MAC) and physical layer (PHY) specifications for

wireless personal area networks (WPANs), 14 June 2005.

[12] Boldrini, Stefano. “Recognition of Bluetooth Signals based on Feature

Detection”. M.S degree in Telecommunication Engineering, Sapienza

Università di Roma, 12 April 2010.

[13] http://es.wikipedia.org/wiki/Radio_cognitiva/

[14] http://en.wikipedia.org/wiki/Electromagnetic_interference_at_2.4_GHz

[15] Ho Y.H. and Kashyap R.L. “An algorithm for linear inequalities and its

applications,” IEEE Transactions on Electronic Computers,Vol.14(5), 1965.

[16] IEEE Std 802.15.4 – 2006, IEEE Standard for Information technology –

Telecommunications and information exchange between systems – Local

and metropolitan area networks – Specific requirements – Part 15.4:

Wireless Medium Access Control (MAC) and Physical Layer (PHY)

Specifications for Low-Rate Wireless Personal Area Networks (WPANs), 8

September 2006.

Carmen J. Martin Martin – SAPIENZA Università di Roma

117

Appendix

Carmen J. Martin Martin – SAPIENZA Università di Roma

118

	

Carmen J. Martin Martin – SAPIENZA Università di Roma

119

	

Carmen J. Martin Martin – SAPIENZA Università di Roma

120

Carmen J. Martin Martin – SAPIENZA Università di Roma

121

Carmen J. Martin Martin – SAPIENZA Università di Roma

122

Generalized Classifier Code:

1 . Training2:

%Generalized Classifier Script

%Generating Features second Probability Density Function

C=input('\n Number of Classes to be classifier:') ; % Number of Classes

M=input('\n Number of Features:'); % Number of Features

N=input('\n Choose the number of training for only Class:') ; % Training
Number

fprintf('\n -Gaussian Distribution = 1 ')

fprintf('\n -Rayleigh Distribution = 2 ')

fprintf('\n -Uniform Distribution = 3 \n')

fprintf('\n Choose second a number the distributions for each feature \n')

Distributions=zeros(M,C);

for c=1:C

 fprintf('\n * Choose the feature distribution for the Class %d \n ',c)

 for f=1:M

 fprintf('\n For the feature: %d \n',f)

 Distributions(f,c)=input('\n Choose the distribution:');

 end
end

% Feature's Characterization

Distributionx=Distributions;

Vector_parameters=zeros(5,C*M);

for d=1:C

 fprintf('\n * Insert the parameters for Class %d\n ',d)

 Distributions_1= Distributions(1:M,d);

 for g=1:M

 fprintf('\n Characterization of Feature %g\n',g)

 switch (Distributions_1(g))

 case 1

 Vector_parameters(1,g+M*(d-1))=input('\n Insert sigma:');

Carmen J. Martin Martin – SAPIENZA Università di Roma

123

 Vector_parameters(2,g+M*(d-1))=input('\n Insert mean:');

 case 2

 Vector_parameters(3,g+M*(d-1))=input('\n Insert sigma:');

 case 3

 Vector_parameters(4,g+M*(d-1))=input ('\n Insert the start
interval:');

 Vector_parameters(5,g+M*(d-1))=input('\n Insert the end
interval:');
 end

 end

end

Parameters=Vector_parameters;

Feature_matrix=zeros(N,C*M);

%Calculating the Feauture's Histogram

for t=1:C

 Distributions_1= Distributions(1:M,t);

 for y=1:M

 switch (Distributions_1(y))

 case 1

 Sigma=Parameters(1,y+M*(t-1));

 Mean=Parameters(2,y+M*(t-1));

 Feature_matrix(1:N,y+M*(t-1))= randn(1,N)*Sigma +Mean;

 case 2

 Uniform_Distribution=rand(1,N);

 Sigma=Parameters(3,y+M*(t-1));

 for i=1:N

 Feature_matrix(i,y+M*(t-1))= Sigma*sqrt(-2*log(1-
Uniform_Distribution(i)));

 end
 case 3

 a=Parameters(4,y+M*(t-1));

 b=Parameters(5,y+M*(t-1));

 Feature_matrix(1:N,y+M*(t-1))= a + (b-a).*

Carmen J. Martin Martin – SAPIENZA Università di Roma

124

rand(N,1);
 end

 end

end

X1=Feature_matrix; % Training Matrix

% Plotting Histograms

 for l=1:C

 figure(l)

 for z=1:M

 subplot(M,1,z),hist(Feature_matrix(1:N,z+M*(l-1)),100)

 title(['Characterization of Class',int2str(l) '.
Feature',int2str(z) ' Histrogram'])

 xlabel(['Feature ',int2str(z)]);

 ylabel('Occurrence');

 end

 hold on

 end

 % Folder Name's Construction

 FolderName=cbuild(C,M);

 mkdir(FolderName);

 % Plotting the M-dimensional Space

 ColorSet=[0 0 1 ; 1 0 0 ; 0 1 0 ; 0 1 1 ; 1 0 1 ;0 0 0;1 1 0];

 controlC=C-1;

 switch(M)

 case 1

Carmen J. Martin Martin – SAPIENZA Università di Roma

125

 figure(C+1)

 for f=1:M:M*C

p1=plot(X1(1:N,f),zeros(1,N),'+','Color',ColorSet(1+((f-1)/M),:));

 hold on

 end

 hold on

 title('Features Space')

 switch(controlC)

 case 1

 legend('Class 1','Class 2',2);

 case 2

 legend('Class 1','Class 2','Class 3',3);

 case 3

 legend('Class 1','Class 2','Class 3','Class
4',4);

 case 4

 legend('Class 1','Class 2','Class 3','Class
4','Class 5',5);

 case 5

 legend('Class 1','Class 2','Class 3','Class
4','Class 5','Class 6',6);

 case 6

 legend('Class 1','Class 2','Class 3','Class
4','Class 5','Class 6','Class 7',7);

 end

 xlabel('Feature')

 ylim([-0.05 0.05])

 grid on

 cd (FolderName);

 hgsave('1Feature')

 cd ..

 case 2

Carmen J. Martin Martin – SAPIENZA Università di Roma

126

 figure(C+1)

 for f=1:M:M*C

p2=plot(X1(1:N,f),X1(1:N,f+1),'+','Color',ColorSet(1+((f-1)/M),:));

 hold on

 end

 hold on

 title('Features Space')

 switch(controlC)

 case 1

 legend('Class 1','Class 2',2);

 case 2

 legend('Class 1','Class 2','Class 3',3);

 case 3

 legend('Class 1','Class 2','Class 3','Class
4',4);

 case 4

 legend('Class 1','Class 2','Class 3','Class
4','Class 5',5);

 case 5

 legend('Class 1','Class 2','Class 3','Class
4','Class 5','Class 6',6);

 case 6

 legend('Class 1','Class 2','Class 3','Class
4','Class 5','Class 6','Class 7',7);

 end

 xlabel('Feature 1')

 ylabel('Feature 2')

 grid on

 cd(FolderName)

 hgsave('2Features')

 cd ..

 case 3

 figure(C+1)

Carmen J. Martin Martin – SAPIENZA Università di Roma

127

 for f=1:M:M*C

p3=plot3(X1(1:N,f),X1(1:N,f+1),X1(1:N,f+2),'+','Color',ColorSet(1+((f-
1)/M),:));

 hold on

 end

 hold on

 title('Features Space')

 switch(controlC)

 case 1

 legend('Class 1','Class 2',2);

 case 2

 legend('Class 1','Class 2','Class 3',3);

 case 3

 legend('Class 1','Class 2','Class 3','Class
4',4);

 case 4

 legend('Class 1','Class 2','Class 3','Class
4','Class 5',5);

 case 5

 legend('Class 1','Class 2','Class 3','Class
4','Class 5','Class 6',6);

 case 6

 legend('Class 1','Class 2','Class 3','Class
4','Class 5','Class 6','Class 7',7);

 end

 xlabel('Feature 1')

 ylabel('Feature 2')

 zlabel('Feature 3')

 grid on

 cd(FolderName)

 hgsave('3Features')

 cd ..

 end

 % Generation matrix of Training (M,N*C) dimension

Carmen J. Martin Martin – SAPIENZA Università di Roma

128

 D=N*C;% Total Number of Training

 Xp=zeros(M,N); %Training Matrix

 X_convertion= (X1)';

 Xq=zeros(M,N*C);

 X=zeros(1:M,N*C);

 for k=1:C

 Xp(1:M,1:N)= X_convertion(1+M*(k-1):(k*M),1:N);

 Xq=[Xq Xp];

 Xp=zeros(M,N);

 end

 X=Xq(1:M,(N*C)+1:2*(N*C));

 % Axis Construction

 max_values=max(X,[],2);

 min_values=min(X,[],2);

 % Vector of Desired Response Generation

 if (C==2)

 y_ort=[ones(1,N) (ones(1,N)*(-1))];

 else

 y_ort=[ones(1,N) zeros(1,N*(C-1))];

 end

 % Feature Vector to be classified

 if (C==2)

 fprintf('\n Insert the feacture vector to be classified. \n ')

 if (M==1)

 yax=linspace(-0.05,0.05,10);

 xsample_1=input('Insert the Feature:');

 xsample=[1;xsample_1];

Carmen J. Martin Martin – SAPIENZA Università di Roma

129

 figure(C+1)

 plot(xsample_1,0,'go');

 % Calculating Vector of Weights

 W1=Pocket(X,y_ort,M,N,C);

 w_ini=(rand(1,M+1))' ;% Initialization Vector

 W2 =perce(X,y_ort,M,N,C,w_ini);

 W3= LMS(X,M,N,C,W2,y_ort);

 W4=SOE(X,M,N,C) ;

 w01=W1(1);

 w11=W1(2);

 w02=W2(1);

 w12=W2(2);

 w03=W3(1);

 w13=W3(2);

 w04=W4(1);

 w14=W4(2);

 % With Pocket

 cd(FolderName)

 hgload('1Feature')

 hold on

 figure(C+2)

 plot(xsample_1,0,'go');

 hold on

 plot((-w01/w11)*ones(1,10),yax,'-.k*')

 hold on

 title('Discriminant Function with Pocket Algorithm');

 hgsave('WithPocket')

 cd ..

 % With Perceptron

 cd(FolderName)

 hgload('1Feature')

 hold on

 figure(C+3)

Carmen J. Martin Martin – SAPIENZA Università di Roma

130

 plot(xsample_1,0,'go');

 hold on

 plot((-w02/w12)*ones(1,10),yax,'-.k*')

 hold on

 title('Discriminant Function with Perceptron
Algorithm');

 hgsave('WithPercpetron')

 cd ..

 %With LMS

 cd(FolderName)

 hgload('1Feature')

 hold on

 figure(C+4)

 plot(xsample_1,0,'go');

 hold on
%
 plot((-w03/w13)*ones(1,10),yax,'-.k*')

 hold on

 title('Discriminant Function with LMS Algorithm');

 hgsave('WithLMS')

 cd ..

 %With SOE

 cd(FolderName)

 hgload('1Feature')

 hold on

 figure(C+5)

 plot(xsample_1,0,'go');

 hold on

 plot((-w04/w14)*ones(1,10),yax,'-.k*')

 hold on

 title('Discriminant Function with SOE Algorithm');

 hgsave('WithSOE')

 cd ..

Carmen J. Martin Martin – SAPIENZA Università di Roma

131

 elseif(M==2)

 xsample_1= input('Insert Feature 1:');

 xsample_2= input('Insert Feature 2:');

 xsample=[1 ;xsample_1; xsample_2];

 figure(C+1)

 plot(xsample(2),xsample(3),'go');

 hold on

 xax= linspace((min_values(1))-0.5,max_values(1)+0.5,1000);

 % Calculating Vector of Weights

 % With Pocket

 W1=Pocket(X,y_ort,M,N,C);

 w01=W1(1);

 w11=W1(2);

 w21=W1(3);

 y1= -(w01+(w11*xax))/w21;

 cd(FolderName);

 hgload('2Features');

 hold on;

 figure(C+2)

 plot(xax,y1,':k','LineWidth',2);

 hold on;

 figure(C+2)

 plot(xsample(2),xsample(3),'go');

 title('Discriminant Function with Pocket Algorithm');

 %axis([(min_values(1)-2) (max_values(1)+2) (min_values(2)-
2) (max_values(2)+2)])

 hold on;

 hgsave('WithPocket');

 cd ..

 %With Perceptron

Carmen J. Martin Martin – SAPIENZA Università di Roma

132

 w_ini=(ones(1,M+1))' ;% Initialization Vector

 W2 =perce(X,y_ort,M,N,C,w_ini);

 w02=W2(1);

 w12=W2(2);

 w22=W2(3);

 y2= -(w02+(w12*xax))/w22;

 cd(FolderName);

 hgload('2Features');

 figure(C+3)

 plot(xax,y2,':k','LineWidth',2);

 hold on;

 plot(xsample(2),xsample(3),'go');

 hold on;

 title('Discriminant Function with Perceptron Algorithm');

 hold on;

 hgsave('WithPerceptron');

 cd ..

 %With LMS

 W3= LMS(X,M,N,C,W1,y_ort);

 w03=W3(1);

 w13=W3(2);

 w23=W3(3);

 y3= -(w03+(w13*xax))/w23;

 cd(FolderName);

 hgload('2Features');

 figure(C+4)

 plot(xax,y3,':k','LineWidth',2);

 hold on;

 plot(xsample(2),xsample(3),'go');

 hold on;

 title('Discriminant Function with LMS Algorithm');

 hold on;

Carmen J. Martin Martin – SAPIENZA Università di Roma

133

 hgsave('With LMS');

 cd ..

 %With SOE

 W4=SOE(X,M,N,C) ;

 w04=W4(1);

 w14=W4(2);

 w24=W4(3);

 y4= -(w04+(w14*xax))/w24;

 cd(FolderName);

 hgload('2Features');

 figure(C+5)

 plot(xax,y4,':k','LineWidth',2);

 hold on;

 plot(xsample(2),xsample(3),'go');

 hold on;

 title('Discriminant Function with SOE Algorithm');

 hold on ;

 hgsave('WithSOE');

 cd ..

 elseif(M==3)

 xsample_1= input('Insert Feature 1:')

 xsample_2= input('Insert Feature 2:')

 xsample_3=input('Insert Feature 3:')

 xsample=[1 ;xsample_1; xsample_2; xsample_3];

 plot3(xsample(2),xsample(3),xsample(4),'go');

 hold on;

 xaxis= linspace((min_values(1))-0.5,max_values(1)+0.5,100);

 yaxis= linspace(min_values(2)-0.5,max_values(2)+0.5,100);

 % With Pocket

Carmen J. Martin Martin – SAPIENZA Università di Roma

134

 W1=Pocket(X,y_ort,M,N,C);

 w01=W1(1);

 w11=W1(2);

 w21=W1(3);

 w31=W1(4);

 z1=zeros(100,100);

 for t=1:100

 for u=1:100

 z1(t,u)=(-1)*(w01+w11*xaxis(u)+w21*yaxis(t))/w31;

 end

 end

 cd(FolderName);

 hgload('3Features');

 hold on

 figure(C+2)

 plot3(xsample(2),xsample(3),xsample(4),'go');

 hold on;

 mesh(xaxis,yaxis,z1);

 hold on;

 title('Discriminant Function with Pocket Algorithm');

 hgsave('WithPocket');

 cd ..

 %With Percetron

 w_ini=(rand(1,M+1))' ;% Initialization Vector

 W2 =perce(X,y_ort,M,N,C,w_ini);

 w02=W2(1);

 w12=W2(2);

 w22=W2(3);

 w32=W2(4);

 z2=zeros(100,100);

 for t=1:100

 for u=1:100

 z2(t,u)=(-1)*(w02+w12*xaxis(u)+w22*yaxis(t))/w32;

Carmen J. Martin Martin – SAPIENZA Università di Roma

135

 end

 end

 cd(FolderName);

 hgload('3Features')

 hold on;

 figure(C+3)

 plot3(xsample(2),xsample(3),xsample(4),'go');

 hold on;

 mesh(xaxis,yaxis,z2);

 hold on;

 title('Discriminant Function with Perceptron Algorithm')

 hgsave('WithPerceptron');

 cd ..

 %With LMS

 W3= LMS(X,M,N,C,W2,y_ort);

 w03=W3(1);

 w13=W3(2);

 w23=W3(3);

 w33=W3(4);

 z3=zeros(100,100);

 for t=1:100

 for u=1:100

 z3(t,u)=(-1)*(w03+w13*xaxis(u)+w23*yaxis(t))/w33;

 end

 end

 cd(FolderName);

 hgload('3Features');

 hold on;

 figure(C+4)

 plot3(xsample(2),xsample(3),xsample(4),'go');

 hold on;

 mesh(xaxis,yaxis,z3);

 hold on;

Carmen J. Martin Martin – SAPIENZA Università di Roma

136

 title('Discriminant Function with LMS Algorithm')

 hgsave('WithLMS')

 cd ..

 %With SOE

 W4=SOE(X,M,N,C) ;

 w04=W4(1);

 w14=W4(2);

 w24=W4(3);

 w34=W4(4);

 z4=zeros(100,100);

 for t=1:100

 for u=1:100

 z4(t,u)=(-1)*(w04+w14*xaxis(u)+w24*yaxis(t))/w34;

 end

 end

 cd(FolderName);

 hgload('3Features');

 hold on;

 figure(C+5)

 plot3(xsample(2),xsample(3),xsample(4),'go');

 hold on;

 mesh(xaxis,yaxis,z4);

 hold on;

 title('Discriminant Function with SOE Algorithm')

 hgsave('WithSOE')

 cd ..

 else

 xsample1= input('Insert the Vector = ')

 xsample=[1;xsample1(1:M,1)];

 W1=Pocket(X,y_ort,M,N,C);

 w_ini=(rand(1,M+1))' ;% Initialization Vector

 W2 =perce(X,y_ort,M,N,C,w_ini);

Carmen J. Martin Martin – SAPIENZA Università di Roma

137

 W3= LMS(X,M,N,C,W2,y_ort);

 W4=SOE(X,M,N,C) ;

 end

 % Discrimination Stage for 2_Class case

 Threshold1=W1'*xsample;

 if Threshold1<0

 fprintf('\n Second Pocket Algorithm the Vector takes
part of the Class 2 \n');

 else

 fprintf('\n Second Pocket Algorithm the Vector
takes part of the Class 1 \n');

 end

 Threshold2=W2'*xsample;

 if Threshold2<0

 fprintf('\n Second Pocket Algorithm the Vector takes
part of the Class 2 \n');

 else

 fprintf('\n Second Pocket Algorithm the Vector
takes part of the Class 1 \n');

 end

 Threshold3=W3'*xsample;

 if Threshold3<0

 fprintf('\n Second Perceptron Algorithm the Vector
takes part of the Class 2 \n');

 else

 fprintf('\n Second Perceptron Algorithm the Vector
takes part of the Class 1 \n');

 end

 Threshold4=W4'*xsample;

Carmen J. Martin Martin – SAPIENZA Università di Roma

138

 if Threshold4<0

 fprintf('\n Second LMS Algorithm the Vector takes
part of the Class 2 \n');

 else

 fprintf('\n Second LMS Algorithm the Vector takes
part of the Class 1 \n');

 end

 % C_Class Classifier (C>2)

 else

 xax= linspace((min_values(1))-0.5,max_values(1)+0.5,100);

 fprintf('\n Insert the feacture vector to be classified. \n ')

 if (M==1)

 xsample_1=input('Insert the Feature:');

 xsample=[xsample_1;1];

 plot(xsample_1,0,'ko');

 hold on

 elseif(M==2)

 xsample_1= input('Insert Feature 1:')

 xsample_2= input('Insert Feature 2:')

 xsample=[xsample_1; xsample_2;1];

 plot(xsample(1),xsample(2),'ko')

 elseif(M==3)

 yax= linspace((min_values(2))-0.5,max_values(2)+0.5,1000);

 xsample_1= input('Insert Feature 1:')

 xsample_2= input('Insert Feature 2:')

 xsample_3=input('Insert Feature 3:')

 xsample=[xsample_1; xsample_2; xsample_3;1];

 plot3(xsample(1),xsample(2),xsample(3),'ko')

Carmen J. Martin Martin – SAPIENZA Università di Roma

139

 else

 xsample1= input('Insert the Vector = ')

 xsample=[xsample1(1:M,1);1];

 end

 Matrix_Kesler=Kesler_Construc(X,M,N,C);

 w1_Cclass=perceMultiClass(Matrix_Kesler);

 fprintf('\n Second Perceptron Algorithm :\n')

 discriminant_Cclass(xsample,C,M,w1_Cclass);

 w2_Cclass= PocketMultiClass(Matrix_Kesler);

 fprintf('\n Second Pocket Algorithm :\n')

 discriminant_Cclass(xsample,C,M,w2_Cclass);

 %---------------------------------------

 matrix_weightLMS=zeros(M+1,C);

 w_ini=(rand(1,M+1))' ;% Initialization Vector

 for o=1:C

 matrix_weightLMS(1:M+1,o)=LMSMultiClass(X,M,N,C,w_ini,o);

 end

 %Discrimant Block

 ThersholdLMSMultiClass=zeros(1,C);

 for g=1:C

 ThersholdLMSMultiClass(g)=
(matrix_weightLMS(1:M+1,g))'*xsample;

 end

ClassLMS=find(ThersholdLMSMultiClass==max(ThersholdLMSMultiClass));

 fprintf('\n Second LMS Algorithm the vector takes part of the
Class %d \n',ClassLMS)

 %--

Carmen J. Martin Martin – SAPIENZA Università di Roma

140

 matrix_weightSOE=zeros(M+1,C);

 for r=1:C

 matrix_weightSOE(1:M+1,r)= SOEMultiClass(X,M,N,C,r) ;

 end

 %Discrimant Block

 ThersholdSOEMultiClass=zeros(1,C);

 for u=1:C

 ThersholdSOEMultiClass(u)=
(matrix_weightSOE(1:M+1,u))'*xsample;

 end

ClassSOE=find(ThersholdSOEMultiClass==max(ThersholdSOEMultiClass));

 fprintf('\n Second SOE Algorithm the vector takes part of the
Class %d \n',ClassSOE)

 end

2.cbuild

% This function creates a variable folder name

function FolderName=cbuild(C,M)

FolderName='';

FolderName=[FolderName num2str(C) 'Classes' '_' num2str(M) 'Features' '_'
date '_' num2str(cputime)];

3.Perceptron

% Perceptrom Algorithm

function w =perce(X,y,M,N,C,w_ini)

Ntotal=N*C;

Xper=[ones(1,Ntotal); X(1:M,1:Ntotal)];

[m,Ntotal]=size(Xper);

yper=y;

max_iter=100000; % Maximum allowable number of iterations

Carmen J. Martin Martin – SAPIENZA Università di Roma

141

rho=1; % Learning rate

w=w_ini; % Initialization of the parameter vector

iter=0; % Iteration counter

mis_clas=Ntotal; % Number of misclassified vectors

while(mis_clas>0)&&(iter<max_iter)

 iter=iter+1;

 mis_clas=0;

 gradi=zeros(M+1,1) ;% Inizialitation of the gradient term

 for i=1:Ntotal

 if((Xper(:,i)'*w)*yper(i)<0) % Verification Perceptron cost

 mis_clas=mis_clas+1;

 gradi=gradi-(yper(i)*Xper(:,i)); % Computation of the gradient
term
 end

 end

 w=w-(1/iter)*gradi; %Updating the parameter vector
end

fprintf('\n Iteration Number with Perceptron %d \n',iter);

4.Pocket

% Pocket Algorithm with Ratchet

function W= Pocket(X,y,M,N,C)

%X=[] Training Feature Vectors Matrix

%y=[] Vector of desired responses

%W=[] Vector of integral pocket weights

%pi=[] Vector of integral perceptron weights

%run_pi= number of consecutive correct classifications using perceptron
weights pi

%run_w= number of consecutive correct classifications using pockets weights
W

%num_okpi= total number of training examples that pi correctly classifies.

%num_okw= total number of training examples that W correctly classifies.

Ntotal=N*C;

Xpocket=[ones(1,Ntotal); X(1:M,1:Ntotal)];

Carmen J. Martin Martin – SAPIENZA Università di Roma

142

[m,Ntotal]=size(Xpocket);

pi=(zeros(1,m))';

run_pi=0;

run_w=0;

num_okpi=0;

num_okw=0;

num_Iteration=100000;

Iteration_counter=1;

index= ceil(Ntotal*rand(1,1)) ;% Randomly pick a training example

x_sample= Xpocket(1:m,index);

y_sample= y(index);

 while ((Iteration_counter<num_Iteration) && (num_okw<Ntotal))

 f_sample=pi'*x_sample;

 if (((f_sample >0) && (y_sample ==1)) || ((f_sample <0)
&& (y_sample ==-1)))

 run_pi=run_pi+1;

 if (run_pi>run_w)

 %Compute num_okpi by checking every training
example

 for i=1:Ntotal

 f_sample_vector(i)=pi'*Xpocket(1:m,i);

 end

 thershold=f_sample_vector.*y;

 correctly_index=find(thershold>0);

 num_okpi=length(correctly_index);

 if (num_okpi>num_okw)

 W=pi;

 run_w=run_pi;

 num_okw=num_okpi;

Carmen J. Martin Martin – SAPIENZA Università di Roma

143

 if (num_okw==Ntotal)

 break

 end

 end

 end

 index= ceil(Ntotal*rand(1,1)); % Randomly pick a
training example

 x_sample= Xpocket(1:m,index);

 y_sample= y(index);

 f_sample=pi'*x_sample;

 else

 pi=pi+y_sample*x_sample;

 run_w=0;

 run_pi=0;

 end

 Iteration_counter=Iteration_counter+1;

 end

 fprintf('\n Iteration Number with Pocket: %d \n',Iteration_counter);

5.LMS

% LMS Algorithm

function w= LMS(X,M,N,C,W2,y)

Ntotal=N*C;

XLMS=[ones(1,Ntotal); X(1:M,1:Ntotal)];

% y=zeros(1,Ntotal);

Carmen J. Martin Martin – SAPIENZA Università di Roma

144

%
% for t=1:Ntotal
%
% y(t)=W2'*XLMS(1:(M+1),t);
%
% end

[m,Ntotal]=size(XLMS);

w=W2;

rhoK= 4e-10; % Learning rate

for i=1:Ntotal

 w= w+((rhoK)*(y(i)-(XLMS(1:m,i))'*w)*XLMS(1:m,i));
end

6.SOE

%Sum of Error Squares Estimation

function w= SOE(X,M,N,C)

% Ntotal=N*C;
%
% XSOE=[ones(1,Ntotal); X(1:M,1:Ntotal)];
%
%
% [m,Ntotal]=size(XSOE);
%
% y=zeros(1,Ntotal)';
%
% for t=1:Ntotal
%
% y(t)=W2'*XSOE(1:(M+1),t);
%
% end
%
% W=(zeros(1,m))';
%
%
%
% %Compute the weights vector
%
%
% W= inv(XSOE*XSOE')*(XSOE*y);
%

Ntotal=N*C;

XSOEinitial=[ones(1,Ntotal); X(1:M,1:Ntotal)];

Y1=XSOEinitial';

Y=[Y1(1:N,1:M+1);(-1)*Y1(N+1:2*N,1:M+1)];

Carmen J. Martin Martin – SAPIENZA Università di Roma

145

w=ones(1,M+1)';

y=ones(Ntotal,1);

rho=0.9;

% bmin=0.01;

MaxIteration=1500000;

for k=1:MaxIteration

 error=(Y*w)-y;

 errorpositive=(error+abs(error))/2;

 y=y+2*(rho)*errorpositive;

 w=(inv(Y'*Y)*Y')*y;

 if(Y*w >0)

 break;

 end

end

 fprintf('K=,%d',k);
%
% x=linspace(1,100,1000);
%
% w1=w(1);
%
% w2=w(2);
%
% w3=w(3);
%
% ynuevo =zeros(1,1000);
%
% ynuevo =(-1)*((w2*x)+w1)/w3;
%
% plot(x,ynuevo)
% hold on;
% grid on;
%
% axis([1 50 0 20]);

%

7.Kesler

% M Class Case Classification

function Matrix_Kesler=Kesler_Construc(X,M,N,C)

Ntotal=N*C;

Carmen J. Martin Martin – SAPIENZA Università di Roma

146

X1= [X(1:M,1:Ntotal); ones(1,Ntotal)];

[m,Ntotal]=size(X1);

Xtraining_extension=zeros(m*C,C*N);

Xtotale=zeros(m*C,C*N);

for i=1:C

 for p=1:N

 for j=1:C

 if (i==j)

 Xtraining_extension(1:m*C,(N*C*(i-1))+(j+C*(p-1)))=
zeros(1:m*C,1);

 else

 Xtraining_extension(((i-1)*m)+1:((i-1)*m)+m,(N*C*(i-
1))+(j+C*(p-1)))= X1(1:m,p+N*(i-1));

 Xtraining_extension(((j-1)*m)+1:((j-1)*m)+m,(N*C*(i-1))+(j+C*(p-
1)))= (-1)*X1(1:m,p+N*(i-1));

 end

 end

 end

 %Xtotale (1:m*C,1+N*C*(i-1):N*C*(i-
1)+(N*C))=Xtraining_extension(1:m*C,1:C*N)
end

f=Xtraining_extension;

[a,b]=size(f);

index=any(f);

index_def=zeros(1,length(index));

for i=1:length(index)

 if(index(i)==1)

 index_def(i)=i;

 end

end

t=0;

vect_f=zeros(1,Ntotal*(C-1));

x=length(vect_f);

for j=1:length(index_def)

Carmen J. Martin Martin – SAPIENZA Università di Roma

147

 if(index_def(j)~=0)

 t=t+1;

 vect_f(t)=index_def(j);

 end

end

%Final Kesler Construction

Matrix_Kesler= zeros(a,x);

for k=1:x

 Matrix_Kesler(1:a,k)=(f(1:a,vect_f(k)));

end

8.Perceptron multic lass

% Perceptron Algorithm for Multiclass Case

function w=perceMultiClass(Matrix_Kesler)

[o,p]=size(Matrix_Kesler);

y=ones(1,p);

yper=y;

max_iter=100000; % Maximum allowable number of iterations

rho=1; % Learning rate

% Initialization of the parameter vector

w=(zeros(1,o))';

for h=1:o

 w(h)= rand(1,1);

end

iter=0; % Iteration counter

mis_clas=p; % Number of misclassified vectors

while(mis_clas>0)&&(iter<max_iter)

 iter=iter+1;

 mis_clas=0;

 gradi=zeros(o,1) ;% Inizialitation of the gradient term

 for i=1:p

 if((w'*Matrix_Kesler(:,i))*yper(i)<0) % Verification Perceptron cost

Carmen J. Martin Martin – SAPIENZA Università di Roma

148

 mis_clas=mis_clas+1;

 gradi=gradi-(yper(i)*Matrix_Kesler(:,i)); % Computation of the
gradient term
 end

 end

 w=w-(rho/iter)*gradi; %Updating the parameter vector
end

fprintf('Iteration Counter %d',iter);

9. Pocket Multi -Class

% Pocket Algorithm with Ratchet for Multi-Class Case

function W= PocketMultiClass(Matrix_Kesler)

% Pocket Algorithm with Ratchet

%X=[] Training Feature Vectors Matrix

%y=[] Vector of desired responses

%W=[] Vector of integral pocket weights

%pi=[] Vector of integral perceptron weights

%run_pi= number of consecutive correct classifications using perceptron
weights pi

%run_w= number of consecutive correct classifications using pockets weights
W

%num_okpi= total number of training examples that pi correctly classifies.

%num_okw= total number of training examples that W correctly classifies.

Xpocket=Matrix_Kesler;

[u,v]=size(Xpocket);

y=(ones(1,v));

pi=(zeros(1,u))';

run_pi=0;

run_w=0;

num_okpi=0;

num_okw=0;

num_Iteration=100000;

Iteration_counter=1;

index= ceil(v*rand(1,1)) ;% Randomly pick a training example

x_sample= Xpocket(1:u,index);

Carmen J. Martin Martin – SAPIENZA Università di Roma

149

y_sample= y(index);

f_sample_vector= zeros(1,v);

thershold=zeros(1,v);

 while ((Iteration_counter<num_Iteration) && (num_okw<v))

 f_sample=pi'*x_sample;

 if (f_sample >0)

 run_pi=run_pi+1;

 if (run_pi>run_w)

 %Compute num_okpi by checking every training
example

 for i=1:v

 f_sample_vector(i)=pi'*Xpocket(1:u,i);

 end

 thershold=f_sample_vector.*y;

 correctly_index=find(thershold>0);

 num_okpi=length(correctly_index);

 if (num_okpi>num_okw)

 W=pi;

 run_w=run_pi;

 num_okw=num_okpi;

 if (num_okw==v)

 break

 end

 end

 end

 index= ceil(v*rand(1,1)); % Randomly pick a
training example

 x_sample= Xpocket(1:u,index);

 y_sample= y(index);

 f_sample=pi'*x_sample;

Carmen J. Martin Martin – SAPIENZA Università di Roma

150

 else

 pi=pi+y_sample*x_sample;

 run_w=0;

 run_pi=0;

 end

 Iteration_counter=Iteration_counter+1;

 end

 fprintf('\n Iteration Number with Pocket: %d \n',Iteration_counter);

10.LMS Multi -Class

% LMS Algorithm

function w= LMSMultiClass(X,M,N,C,w_ini,o)

Ntotal=N*C;

XLMS=[X(1:M,1:Ntotal);ones(1,Ntotal)];

[m,Ntotal]=size(XLMS);

y=zeros(1,Ntotal);

y(1+N*(o-1):o*N)=ones(1,N);

w=w_ini;

rhoK= 0.1; % Learning rate

for i=1:Ntotal

 w= w+((rhoK/i)*(y(i)-(XLMS(1:m,i))'*w)*XLMS(1:m,i));
end

 1 1 . Discriminant Block

Carmen J. Martin Martin – SAPIENZA Università di Roma

151

function discriminant_Cclass(xsample,C,M,w)

m=M+1;

Xsamplematrix=zeros(m*C,C*C);

[s,t]=size(Xsamplematrix);

for q=1:C

 for h=1:C

 if (h==q)

 Xsamplematrix(1:s,(h+C*(q-1)))= zeros(s,1);

 else

 Xsamplematrix((q-1)*m+1:((q-1)*m)+m,(h+C*(q-1)))= xsample(1:m,1);

 Xsamplematrix((h-1)*m+1:((h-1)*m)+m,h+C*(q-1))= (-1)*xsample(1:m,1);

 end

 end

end

matrixdef=Xsamplematrix;

indexsample=any(Xsamplematrix);

index_defsample=zeros(1,length(indexsample));

for i=1:length(indexsample)

 if(indexsample(i)==1)

 index_defsample(i)=i;

 end

end

b=0;

vect_fsample=zeros(1,C*(C-1));

xs=length(vect_fsample);

for u=1:length(index_defsample)

 if(index_defsample(u)~=0)

 b=b+1;

 vect_fsample(b)=index_defsample(u);

 end

end

%Final Kesler Construction

Carmen J. Martin Martin – SAPIENZA Università di Roma

152

Matrix_KeslerSample= zeros(s,xs);

for g=1:xs

 Matrix_KeslerSample(1:s,g)=(Xsamplematrix(1:s,vect_fsample(g)));

end

 %Discrimination

Thershold=zeros(C-1,C);

for v=1:C

 for y=1:C-1

 Thershold(y,v)=w'*Matrix_KeslerSample(1:s,y+(C-1)*(v-1));

 end

end

min1=min(Thershold);

for wclass=1:C;

 minth=min1(wclass);

 if (minth>0)

 fprintf('\n The vector takes part of the Class %d \n ',wclass)

 end

end

 end

% Thershold=zeros(1,C)
%
% for g=1:C
%
% Thershold(g)=w(1+m*(g-1):g*m,1)'*xsample
%
% end
%
% index_class=find(Thershold==max(Thershold))

Wifi-Bluetooth Classifier

1.Script
%Script

close all;
clear;
clc;
C=2;
M=2;

Carmen J. Martin Martin – SAPIENZA Università di Roma

153

l=1000;

%Bluetooth traffic Generation (Classifier Input)

 %[DurationVector,TSFVector]=MSBluetoothTrafficGenerationsample(l);

 [DurationVector,TSFVector]=SSBluetoothTrafficGenerationsample(l);

% %Wi-Fi traffic Generation (Classifier Input)

% filename = 'VAIOHPATHSKYPEUTUBEOPENOFFICEINFOCOM.txt';
%
% [TSFVector,DurationVector]=import_WiFi(filename) ;
%
% % %
% Mixed Wi-Fi Bluetooth Input
%[DurationVector,TSFVector]=MixedMSBluetoothWiFi;

%Feature Extraction

[IFSVector,MaxPPDUduration,Interference] =
FeatureExtraction(DurationVector,TSFVector);

L=length(IFSVector);

 %Folder Name's Construction

 FolderName=cbuild(C,M);

 mkdir(FolderName);

%Classification
[xax,y1,y2,y3,y4,W1,W2,W3,W4]= Classifiers(FolderName);

%

% %Multi-Slot
% W1=[27;-2951.00750966092;214];
%
% W2=[-20.9780909571695;-754754.944960720;65177.3137731307];
%
% W3=[-2.60459375983088e+40;-1.91568366881445e+40;3.80307560277537e+39];
%
% W4=[2885.28906276758;-12.2577405322002;0.213666512014766];

%SingleSlot
% W1=[-3;-1160.13813388255;614];
%
% W2=[-1124.66666666667;-596979.329122128;393714.500000000];
% W3=[-791.939264646996;-412350.058961372;241720.118250060];
% W4=[-767.507895440477;-6.77765685180857;6.59157513268478];
% %

%SingleSlot N=10000

Carmen J. Martin Martin – SAPIENZA Università di Roma

154

% W1=[-11; -1951.51989846758 ; 1254];
% W2=[-729.199999999998;-296965.142763335;143747.200000000];
% W3=[-11.0557264886324;-1950.94146912034; 1160.08983006525];
% W4=[-780.131200548504; -6.91890575158495;6.67045354238516];

%Multi Slot N=10000

% W1=[114;-7400.15315093904;619];
% W2=[438966.699999974;-894011.013611800;52211.6000000255];
% W3=[124.716346120036;-3852.40422992936;744.923713217399];
% W4=[1492.39002650608; -17.9499939253218;1.49834503999549];

%
%
%
%
% figure (8)
%
% plot(xax,y1,':k','LineWidth',2);
%
% title('Discriminant Function with Pocket Algorithm');
%
% axis([1 700 1 5000]);
%
% hold on;
%
%
% for a=1:L
%
% plot(IFSVector(a),MaxPPDUduration(a),'*m')
%
% hold on
%
% end
%
% grid on
%
% xlabel('Duration of Silent Gaps (usec)')
%
% ylabel('Max PPDU Duration between two Silent Gaps (usec)')
%
% cd(FolderName);
%
% hgsave('Sample_Pocket');
%
% cd ..
%
%
% figure (9)
%
% plot(xax,y2,':k','LineWidth',2);
%
% title('Discriminant Function with Perceptron Algorithm');
%
% axis([1 700 1 5000]);
%
% hold on;
%
% for b=1:L
%
% plot(IFSVector(b),MaxPPDUduration(b),'*m')
%
% hold on
%
% end

Carmen J. Martin Martin – SAPIENZA Università di Roma

155

%
% grid on
%
% xlabel('Duration of Silent Gaps (usec)')
%
% ylabel('Max PPDU Duration between two Silent Gaps (usec)')
%
% cd(FolderName);
%
% hgsave('Sample_Perceptron');
%
% cd ..
%
%
%
%
%
% figure (2)
%
% plot(xax,y3,':k','LineWidth',2);
%
% title('Discriminant Function with LMS Algorithm');
%
% axis([1 700 1 5000]);
%
% xlabel('Inter Frame Space (usec)');
%
% ylabel('Max PPDU Duration (usec)');
%
% hold on;
%
%
% for c=1:L
%
%
%
% plot(IFSVector(c),MaxPPDUduration(c),'*m')
%
% hold on
%
% end
%
% grid on
%
% xlabel('Duration of Silent Gaps (usec)')
%
% ylabel('Max PPDU Duration between two Silent Gaps (usec)')
%
% cd(FolderName);
%
% hgsave('Sample_LMS');
%
% cd ..
%
%
%
%
% figure (3)
%
% plot(xax,y4,':k','LineWidth',2);
%
% title('Discriminant Function with SOE Algorithm');
%
% xlabel('Inter Frame Space (usec)');
%
% ylabel('Max PPDU Duration (usec)');

Carmen J. Martin Martin – SAPIENZA Università di Roma

156

%
% axis([1 700 1 5000]);
%
% hold on;
%
% for d=1:L
%
% plot(IFSVector(d),MaxPPDUduration(d),'*m')
%
% hold on
%
% end
%
% grid on
%
% xlabel('Duration of Silent Gaps (usec)')
%
% ylabel('Max PPDU Duration between two Silent Gaps (usec)')
%
% cd(FolderName);
%
% hgsave('Sample_SOE');
%
% cd ..
%
%
cd (FolderName)

hgload('2Features')

hold on

 figure(3)

 plot(xax,y1,'r');

 hold on;

 plot(xax,y2,'k');

 hold on;

 plot(xax,y3,'g');

 hold on;

 plot(xax,y4,'m');

 hold on;

 hgsave('todo')

 cd ..

%
%
%

 %Discriminant Block

 j
=DiscriminantBlock(W1,W2,W3,W4,L,IFSVector,MaxPPDUduration)

Carmen J. Martin Martin – SAPIENZA Università di Roma

157

2.cel l2str

function str = cell2str(c)
% Convert a cell array of strings into an array of strings.
% CELL2STR pads each string in order to force all strings
% have the same length.
%

% Determine the length of each string in cell array c
nblanks = cellfun(@length, c);
maxn = max(nblanks);
nblanks = maxn-nblanks;

% Create a cell array of blanks. Each column of the cell array contains
% the number of blanks necessary to pad each row of the converted string
padding = cellfun(@blanks,num2cell(nblanks), 'UniformOutput', false);

% Concatinate cell array and padding
str = {c{:}; padding{:}};

% This operation converts new the cell array into a string
str = [str{:}];

% Reshape the string into an array of strings
ncols = maxn;
nrows = length(str)/ncols;

str = reshape(str,ncols,nrows)';

3.Classif ier

%Classifier Script

function [xax,y1,y2,y3,y4,W1,W2,W3,W4]= Classifiers(FolderName)

close all;

C=2;

M=2;

%Wi_Fi Characterization

[TSFVectorWIFI,DurationVectorWIFI]=WIFITrainingGeneration;

[IFSVectorWIFI,MaxPPDUdurationWIFI,InterferenceWIFI]=FeatureExtraction(Durat
ionVectorWIFI,TSFVectorWIFI);

% Bluetooth Charaterization

[DurationVectorBluetooth,TSFVectorBluetooth]=SSBluetoothTrafficGeneration;

%[DurationVectorBluetooth,TSFVectorBluetooth]=MSBluetoothTrafficGeneration;

Carmen J. Martin Martin – SAPIENZA Università di Roma

158

[IFSVectorBluetooth,MaxPPDUdurationBluetooth,InterferenceBluetooth]=FeatureE
xtraction(DurationVectorBluetooth,TSFVectorBluetooth);

%Calculating the Feauture's Histogram

Feature_matrix=zeros(length(IFSVectorWIFI),C*M);

 Feature_matrix(1:length(IFSVectorWIFI),1)= IFSVectorWIFI; %IFS
Wi-Fi

 Feature_matrix(1:length(IFSVectorWIFI),2)=
MaxPPDUdurationWIFI; %Max-Duration Wi-Fi

Feature_matrix(1:length(IFSVectorWIFI),3)=IFSVectorBluetooth(1:length(IFSVec
torWIFI)) ; % IFS Bluetooth

Feature_matrix(1:length(IFSVectorWIFI),4)=MaxPPDUdurationBluetooth(1:length(
IFSVectorWIFI)); %Max-Duration Bluetooth

 X1=Feature_matrix;

 [N,columna]=size(Feature_matrix) % Training Matrix

 %Folder Name's Construction

% % Plotting Histograms
%
%
%
%
% figure(1) %(Bluetooth)
%
% subplot(2,1,1),hist(Feature_matrix(1:N,3),0:1:625);
%
% title('Characterization of Silence Gaps Duration
(Bluetooth)');
%
% grid on;
%
% hold on;
%
% axis([0 700 0 2000]);
%
% subplot(2,1,2),hist(Feature_matrix(1:N,4),0:100:3000);
%
% title('Characterization of Max PPDU Duration between two

Carmen J. Martin Martin – SAPIENZA Università di Roma

159

Silence Gaps (Bluetooth)');
%
% grid on;
%
% hold on;
%
% axis([0 4000 0 3000]);
%
% cd(FolderName);
%
% hgsave('BluetoothCharacterization')
%
% cd ..
%

% figure(2) %(Wi-Fi)
%
%
%
% subplot(2,1,1),hist(Feature_matrix(1:N,1),0:1:625);
%
% title('Characterization of Silence Gaps Duration
(802.11b/g)');
%
% grid on;
%
% hold on;
%
% axis([0 700 0 2000]);
%
%
subplot(2,1,2),hist(Feature_matrix(1:N,2),0:100:3000,'FaceColor',[0.03922
0.1412 0.4157]);
%
% grid on;
%
% title('Characterization of Max PPDU Duration between two
Silence Gaps (802.11b/g)');
%
% hold on
%
% axis([0 4000 0 3000])
%
% cd(FolderName);
%
% hgsave('Wi_FiCharacterization')
%
% cd ..
%
%

% Plotting the M-dimensional Space

 ColorSet=[1 0 0 ; 0 0 1 ; 0 1 0 ; 0 1 1 ; 1 0 1 ;0 0 0;1 1 0];

 controlC=C-1;

Carmen J. Martin Martin – SAPIENZA Università di Roma

160

 figure(1)

% for f=1:M:M*C
%
%
p2=plot(X1(1:N,f),X1(1:N,f+1),'+','Color',ColorSet(1+((f-1)/M),:));
%
% hold on
%
% end

%Paper---

p1=plot(X1(1:N,1),X1(1:N,2),'+','Color',ColorSet(1,:));

 hold on

p2=plot(X1(1:N,3),X1(1:N,4),'o','Color',ColorSet(2,:));

 hold on

 %__

 title('FEATURES SPACE');

 legend('Wi-Fi Training','Bluetooth Training',2);

 axis([1 700 1 5000])

 xlabel('Duration of Silence Gaps [?sec]')

 ylabel('Max Packet Duration between two Silence
Gaps [?sec]')

 grid on

 cd(FolderName)

 hgsave('2Features')

 cd ..

 figure(2)
 Xp= [];
 Xp(1:N,1) = X1(1:N,1);
 Xp(1:N,2) = X1(1:N,2);
 hist3(Xp, {0:5:625
0:100:3000},'FaceAlpha',.65,'LineStyle','none','FaceColor',[1 0 0]);
 title('Data Point Density Histogram and Intensity
Map');
 grid on
 view(3);
 xlabel('Duration of Silence Gaps');
 ylabel('Max Packet Duration between two Silence
Gaps');
 zlabel('Ocorrence');
 set(gcf,'renderer','opengl');
 hold on
 figure(2)

Carmen J. Martin Martin – SAPIENZA Università di Roma

161

 Xp= [];
 Xp(1:N,1) = X1(1:N,3);
 Xp(1:N,2) = X1(1:N,4);
 hist3(Xp, {0:5:625
0:100:3000},'FaceAlpha',.65,'LineStyle','none','FaceColor',[0 0 1]);
 title('Data Point Density Histogram and Intensity
Map');
 grid on
 view(3);
 xlabel('Duration of Silence Gaps');
 ylabel('Max Packet Duration between two Silence
Gaps');
 zlabel('Ocorrence');
 set(gcf,'renderer','opengl');
 hold on

% %Generation matrix of Training (M,N*C) dimension
%

 D=N*C;% Total Number of Training

 Xp=zeros(M,N); %Training Matrix

 X_convertion= (X1)';

 Xq=zeros(M,N*C);

 X=zeros(1:M,N*C);

 for k=1:C

 Xp(1:M,1:N)= X_convertion(1+M*(k-1):(k*M),1:N);

 Xq=[Xq Xp];

 Xp=zeros(M,N);

 end

 X=Xq(1:M,(N*C)+1:2*(N*C));
%
% % Axis Construction
%
 max_values=max(X,[],2);

 min_values=min(X,[],2);

 %Vector of Desired Response Generation

Carmen J. Martin Martin – SAPIENZA Università di Roma

162

 y_ort=[ones(1,N) (ones(1,N)*(-1))];

 xax= linspace(-100,700,1000);

%
% %Calculating Vector of Weights
%
%
%
%
% %With Pocket

 W1=Pocket(X,y_ort,M,N,C);

 w01=W1(1);

 w11=W1(2);

 w21=W1(3);

 y1= -(w01+(w11*xax))/w21;

 cd(FolderName);

 hgload('2Features');

 hold on;

 figure(C+2)

 plot(xax,y1,':k','LineWidth',2);

 hold on;

 %plot(xsample(2),xsample(3),'go');

 title('Discriminant Function with Pocket Algorithm');

 axis([1 700 1 5000])

 corte1=-w01/w21;

 fprintf('Corte %f',corte1)

 hold on;

 hgsave('WithPocket');

 cd ..

 % With Perceptron

 w_ini=ones(1,M+1)' ;% Initialization Vector

 W2 =perce(X,y_ort,M,N,C,w_ini);

 w02=W2(1);

 w12=W2(2);

 w22=W2(3);

 y2= -(w02+(w12*xax))/w22;

Carmen J. Martin Martin – SAPIENZA Università di Roma

163

 cd(FolderName);

 hgload('2Features');

 hold on;

 figure(C+3)

 plot(xax,y2,':k','LineWidth',2);

 hold on;

 %plot(xsample(2),xsample(3),'go');

 hold on;

 title('Discriminant Function with Perceptron Algorithm');

 axis([1 700 1 5000])

 corte2=-w02/w22;

 fprintf('Corte %f',corte2)

 hold on;

 hgsave('WithPerceptron');

 hold on

 cd ..

% %With LMS

 W3= LMS(X,M,N,C,W1,y_ort);

 w03=W3(1);

 w13=W3(2);

 w23=W3(3);

 y3= -(w03+(w13*xax))/w23;

 cd(FolderName);

 hgload('2Features');

 hold on

 figure(C+4)

 plot(xax,y3,':k','LineWidth',2);

 hold on;

 %plot(xsample(2),xsample(3),'go');

 hold on;

 title('Discriminant Function with LMS Algorithm');

 axis([1 700 1 5000])

Carmen J. Martin Martin – SAPIENZA Università di Roma

164

 corte3=-w03/w23;

 fprintf('Corte %f',corte3)

 hold on;

 hgsave('With LMS');

 hold on;

 cd ..

%
 %With SOE

 W4=SOE(X,M,N,C) ;

 w04=W4(1);

 w14=W4(2);

 w24=W4(3);

 y4= -(w04+(w14*xax))/w24;

 cd(FolderName);

 hgload('2Features');

 figure(C+5)

 plot(xax,y4,':k','LineWidth',2);

 hold on;

 plot(xsample(2),xsample(3),'go');

 hold on;

 title('Discriminant Function with SOE Algorithm');

 axis([1 700 1 5000])

 corte4=-w04/w24;

 fprintf('Corte %f',corte4)

 hold on ;

 hgsave('WithSOE');

 hold on

 cd ..

4.Discriminant Block

function j =DiscriminantBlock(W1,W2,W3,W4,L,IFSVector,MaxPPDUduration)

%Discriminant Block

Carmen J. Martin Martin – SAPIENZA Università di Roma

165

 for j=1:L

Thershold_Pocket(j)=W1'*[1;IFSVector(j);MaxPPDUduration(j)];

Thershold_Perceptron(j)=W2'*[1;IFSVector(j);MaxPPDUduration(j)];

 Thershold_LMS(j)=W3'*[1;IFSVector(j);MaxPPDUduration(j)];

 Thershold_SOE(j)=W4'*[1;IFSVector(j);MaxPPDUduration(j)];

 end

 fprintf('\n Number of points to be classified: %d \n',L)

 PorcentPocket=length(find(Thershold_Pocket>0));

 Real_PorcPocket=PorcentPocket*100/L;

 PossiblesBluetooths1=100-Real_PorcPocket;

 fprintf('\n Percentual of points in the Wi-Fi Class using
the Pocket Algorithm is : %f \n',Real_PorcPocket);

 fprintf('\n Percentual of points in the Bluetooth Class
using the Pocket Algorithm is : %f \n',PossiblesBluetooths1);

 PorcentPerceptron=length(find(Thershold_Perceptron>0));

 Real_PorcPerceptron=PorcentPerceptron*100/L;

 PossiblesBluetooths2=100-Real_PorcPerceptron;

 fprintf('\n Percentual of points in the Wi-Fi Class using
the Perceptron Algorithm is : %f \n',Real_PorcPerceptron);

 fprintf(' \n Percentual of points in the Bluetooth Class
using the Perceptron Algorithm is : %f \n',PossiblesBluetooths2);

 PorcentLMS=length(find(Thershold_LMS>0));

Carmen J. Martin Martin – SAPIENZA Università di Roma

166

 Real_PorcLMS=PorcentLMS*100/L;

 PossiblesBluetooths3=100-Real_PorcLMS;

 fprintf('\n Percentual of points in the Wi-Fi Class using
the LMS Algorithm is : %f \n',Real_PorcLMS);

 fprintf('\n Percentual of points in the Bluetooth Class
using the LMS Algorithm is : %f \n',PossiblesBluetooths3);

 PorcentSOE=length(find(Thershold_SOE>0));

 Real_PorcSOE=PorcentSOE*100/L;

 PossiblesBluetooths4=100-Real_PorcSOE;

 fprintf('\n Percentual of points in the Wi-Fi Class using
the SOE Algorithm is : %f \n',Real_PorcSOE);

 fprintf('\n Percentual of points in the Bluetooth Class
using the SOE Algorithm is : %f \n',PossiblesBluetooths4);

5.Error

%ErrorNumber
% %Multi-Slot

% W1=[27;-2951.00750966092;214];
%
% W2=[-20.9780909571695;-754754.944960720;65177.3137731307];
%
% W3=[-2.60459375983088e+40;-1.91568366881445e+40;3.80307560277537e+39];
%
% W4=[2885.28906276758;-12.2577405322002;0.213666512014766];

%SingleSlot
% W1=[-3;-1160.13813388255;614];
%
% W2=[-1124.66666666667;-596979.329122128;393714.500000000];
% W3=[-791.939264646996;-412350.058961372;241720.118250060];
% W4=[-767.507895440477;-6.77765685180857;6.59157513268478];
% %

%SingleSlot N=10000

% W1=[-11; -1951.51989846758 ; 1254];
% W2=[-729.199999999998;-296965.142763335;143747.200000000];
% W3=[-11.0557264886324;-1950.94146912034; 1160.08983006525];
% W4=[-780.131200548504; -6.91890575158495;6.67045354238516];
%
% %Multi Slot N=10000
%
% W1=[114;-7400.15315093904;619];
% W2=[438966.699999974;-894011.013611800;52211.6000000255];
% W3=[124.716346120036;-3852.40422992936;744.923713217399];
% W4=[1492.39002650608; -17.9499939253218;1.49834503999549];
%

Carmen J. Martin Martin – SAPIENZA Università di Roma

167

C=2;

M=2;

%Wi_Fi Characterization

[TSFVectorWIFI,DurationVectorWIFI]=WIFITrainingGeneration;

[IFSVectorWIFI,MaxPPDUdurationWIFI,InterferenceWIFI]=FeatureExtraction(Durat
ionVectorWIFI,TSFVectorWIFI);

% Bluetooth Charaterization

%[DurationVectorBluetooth,TSFVectorBluetooth]=SSBluetoothTrafficGeneration;

[DurationVectorBluetooth,TSFVectorBluetooth]=MSBluetoothTrafficGeneration;

[IFSVectorBluetooth,MaxPPDUdurationBluetooth,InterferenceBluetooth]=FeatureE
xtraction(DurationVectorBluetooth,TSFVectorBluetooth);

%Calculating the Feauture's Histogram

Feature_matrix=zeros(length(IFSVectorWIFI),C*M);

 Feature_matrix(1:length(IFSVectorWIFI),1)= IFSVectorWIFI; %IFS
Wi-Fi

 Feature_matrix(1:length(IFSVectorWIFI),2)=
MaxPPDUdurationWIFI; %Max-Duration Wi-Fi

Feature_matrix(1:length(IFSVectorWIFI),3)=IFSVectorBluetooth(1:length(IFSVec
torWIFI)) ; % IFS Bluetooth

Feature_matrix(1:length(IFSVectorWIFI),4)=MaxPPDUdurationBluetooth(1:length(
IFSVectorWIFI)); %Max-Duration Bluetooth

 X1=Feature_matrix;

 [N,columna]=size(Feature_matrix) % Training Matrix

Carmen J. Martin Martin – SAPIENZA Università di Roma

168

 %Generation matrix of Training (M,N*C) dimension

 D=N*C;% Total Number of Training

 Xp=zeros(M,N); %Training Matrix

 X_convertion= (X1)';

 Xq=zeros(M,N*C);

 X=zeros(1:M,N*C);

 for k=1:C

 Xp(1:M,1:N)= X_convertion(1+M*(k-1):(k*M),1:N);

 Xq=[Xq Xp];

 Xp=zeros(M,N);

 end

 X=Xq(1:M,(N*C)+1:2*(N*C));

 Ntotal=N*C;

 X=[ones(1,Ntotal); X(1:M,1:Ntotal)];

 NumPocket1=zeros(1,N);

 NumPocket2=zeros(1,N);

 NumPerce1=zeros(1,N);

 NumPerce2=zeros(1,N);

 NumLMS1=zeros(1,N);

 NumLMS2=zeros(1,N);

 NumSOE1=zeros(1,N);

 NumSOE2=zeros(1,N);

 NumPocket1=zeros(1,N);

 NumPocket2=zeros(1,N);

 %Verification of misclassified

 for i=1:N

 NumPocket1(i)= W1'*X(1:M+1,i);
 NumPerce1(i)= W2'*X(1:M+1,i);
 NumLMS1(i)= W3'*X(1:M+1,i);
 NumSOE1(i)= W4'*X(1:M+1,i);

 NumPocket2(i)= W1'*X(1:M+1,N+i);

Carmen J. Martin Martin – SAPIENZA Università di Roma

169

 NumPerce2(i)= W2'*X(1:M+1,i+N);
 NumLMS2(i)= W3'*X(1:M+1,i+N);
 NumSOE2(i)= W4'*X(1:M+1,N+i);

 end

 Num11=length(find(NumPocket1>0));

 Num12=length(find(NumPocket2<0));

 Num21=length(find(NumPerce1>0));

 Num22=length(find(NumPerce2<0));

 Num31=length(find(NumLMS1>0));

 Num32=length(find(NumLMS2<0));

 Num41=length(find(NumSOE1>0));

 Num42=length(find(NumSOE2<0));

 Error11=N-Num11;

 Error12=N-Num12;

 Error21=N-Num21;

 Error22=N-Num22;

 Error31=N-Num31;

 Error32=N-Num32;

 Error41=N-Num41;

 Error42=N-Num42;

 fprintf('\n The Number of misclassified Wi-Fi second Pocket is: %d \n
',Error11);

 fprintf('\n The Number of misclassified Bluetooth second Pocket is: %d
\n',Error12);

 fprintf('\n The Number of misclassified Wi-Fi second Perceptron is: %d
\n',Error21);

 fprintf('\n The Number of misclassified Bluetooth second Perceptron is: %d
\n',Error22);

 fprintf('\n The Number of misclassified Wi-Fi second LMS is :%d \n
',Error31);

 fprintf('\n The Number of misclassified Bluetooth second LMS is: %d
\n',Error32);

 fprintf('\n The Number of misclassified Wi-Fi second SOE is: %d\n

Carmen J. Martin Martin – SAPIENZA Università di Roma

170

',Error41);

 fprintf('\n The Number of misclassified Bluetooth second SOE is: %d
\n',Error42);

6.Feature Extraction

%Feature Extraction

function
[IFSVector,MaxPPDUduration,Interference]=FeatureExtraction(DurationVector,TS
FVector)

lDV = length(DurationVector)-1;

 cellIFS = 0;

 IFSVector=[];

 for DurationCounter = 1:lDV

 IFS = TSFVector(DurationCounter+1)-TSFVector(DurationCounter)-
DurationVector(DurationCounter);

 if
(0.6*DurationVector(DurationCounter)>DurationVector(DurationCounter+1)&(IFS<
625)&(IFS>0))

 cellIFS = cellIFS+1;

 IFSVector(cellIFS)=IFS;

 CounterImportantValues(cellIFS)=DurationCounter;
 end
 end

 for fsc = 1:length(CounterImportantValues)

 if (fsc==1)

 MaxPPDUduration(1)= DurationVector(1);

 IFSPlotted(1)=IFSVector(1);
 else
 intmin = CounterImportantValues(fsc-1);

 intmax = CounterImportantValues(fsc);

 PPDUset = DurationVector(intmin:intmax);

 MaxPPDUduration(fsc) = max(PPDUset);

 IFSPlotted(fsc) = IFSVector(fsc);

 end
 end

 Interference=0;

Carmen J. Martin Martin – SAPIENZA Università di Roma

171

 7 . Import Wi-Fi

function [TSFVector,DurationVector]=import_WiFi(filename)

%filename = '2503capture5.txt'
%PPDU duration extraction
fid = fopen (filename,'a+');
acqstring = fileread(filename);
index1 = regexp(acqstring,'Duration');
PacketsCaptured = length(index1);
index2 = regexp(acqstring,'Period :');
indexlast = index2-1;
DurationVector = zeros(1,PacketsCaptured);

for i0 = 1:PacketsCaptured

 textdurationline = acqstring(index1(i0):indexlast(i0));
 textscannedduration = textscan(textdurationline,'%*s %*s %f %*s');
 DurationVector(i0) = cell2mat(textscannedduration);

end

%TSF extraction
fclose(fid);

fid = fopen (filename,'a+');
acqstringTSF = fileread(filename);
indexTSF1 = regexp(acqstringTSF,'TSF');
PacketsCaptured = length(indexTSF1);
indexTSF2 = regexp(acqstring,'Rate');
indexlastTSF = indexTSF2-1;
TSFVector = zeros(1,PacketsCaptured);

for j0 = 1:PacketsCaptured

 textTSFline = acqstringTSF(indexTSF1(j0):indexlastTSF(j0));
 textscannedTSF = textscan(textTSFline,'%*s %*s %f %*s');
 TSFVector(j0) = cell2mat(textscannedTSF);
end

TSFVector = TSFVector - TSFVector(1);
fclose(fid);

%Preamble extraction
fid = fopen (filename,'a+');
acqstringPre = fileread(filename);
indexPre1 = regexp(acqstringPre,'Preamble');
PacketsCaptured = length(indexPre1);
indexPre2 = regexp(acqstring,'Duration :');
indexlastPre = indexPre2-1;
PreVector = zeros(1,PacketsCaptured);

for j0 = 1:PacketsCaptured

 textPreline = acqstringPre(indexPre1(j0):indexlastPre(j0));
 textscannedPre = textscan(textPreline, '%*s %*s %s');
 strtest = cell2str(textscannedPre);
 TF = strcmp('Long', strtest);
 if (TF == 1)
 TSFVector(j0) = TSFVector(j0)-192;

 else
 TSFVector(j0) = TSFVector(j0)-96;

Carmen J. Martin Martin – SAPIENZA Università di Roma

172

 end
end

TSFVector = TSFVector - TSFVector(1);
fclose(fid);

8.LMS

% LMS Algorithm

function w= LMS(X,M,N,C,W2,y)

Ntotal=N*C;

% y=zeros(1,Ntotal);
%
% for t=1:Ntotal
%
% y(t)=W2'*XLMS(1:(M+1),t);
%
% end

% [m,Ntotal]=size(XLMS);
%
%
% w=W2;
%
%
% rhoK= 4e-9; % Learning rate
%
% for i=1:Ntotal
%
% w= w+((rhoK)*(y(i)-(XLMS(1:m,i))'*w)*XLMS(1:m,i));
% end

%----------------

Ntotal=N*C;

XLMSinitial=[ones(1,Ntotal); X(1:M,1:Ntotal)];

Y=[XLMSinitial(1:M+1,1:N) (-1)*XLMSinitial(1:M+1,N+1:2*N)];

w=ones(1,M+1)';

y=100*ones(Ntotal,1);

rho=1e-6;

% bmin=0.01;

for k=1:Ntotal

 error=y(k)-(w'*Y(1:M+1,k));

 errorpositive=(error+abs(error))/2;

Carmen J. Martin Martin – SAPIENZA Università di Roma

173

 ynew(k)=y(k)+2*(rho)*errorpositive;

 w=w+(rho/k)*Y(1:M+1,k)*(ynew(k)-(w'*Y(1:M+1,k)));

end

9.Mixed Bluetooth

function [DurationVector,TSFVector] = MixedMSBluetoothWiFi
l=200;

[DurationVectorB,TSFVectorB]=MSBluetoothTrafficGenerationsample(l);

%[DurationVectorB,TSFVectorB]=SSBluetoothTrafficGenerationsample(l);

filename = 'VAIOHPATHSKYPEUTUBEOPENOFFICEINFOCOM.txt';

[TSFVectorW,DurationVectorW]=import_WiFi(filename);
TSFVector = sort([TSFVectorW TSFVectorB+10000]);

W=1;
B=1;
for i = 1:length(TSFVector)-1
 if (TSFVector(i)==TSFVector(i+1));
 fprintf('warning');
 end
end

for mix = 1:length(TSFVector)

 if (isempty(find(TSFVectorW==TSFVector(mix)))==0)
 DurationVector(mix)=DurationVectorW(W);
 W=W+1;
 else
 DurationVector(mix)= DurationVectorB(B);
 B = B+1;
 end
end

10.MS Bluetooth Traff ic Generation

function
[DurationVectorBluetooth,TSFVectorBluetooth]=MSBluetoothTrafficGeneration

%IFs and Max PPDU Duration

 TS_duration = 625e-6;

 jitter = 10e-6;

 maxP_duration = 366e-6;

 NULL_duration = 126e-6;

 l = 20000;

 probability = 0.7;

Carmen J. Martin Martin – SAPIENZA Università di Roma

174

 packet_duration = [];

 arrival_time = [];

% Scenario 3:
% 80% packets last 1 time slot
% 15% packets last 3 time slot
% 5% packets last 5 time slot

 arrival_time(1) = 0;

for i = 1:l

 if mod(i,2) == 1
 % odd packet -> data packet (master)

 chooser = rand(1,1);

 if chooser <= 0.8 % 1 time slot

 hmts = 1; % how many time slots

 elseif chooser > 0.95 % 5 time slot

 hmts = 5; % how many time slots

 else % 3 time slot

 hmts = 3; % how many time slots

 end

 switch hmts

 case 1 % 1 time slot

 if rand <= probability

 packet_duration(i) = maxP_duration;

 else

 packet_duration(i) = NULL_duration + 1e-
6*randint(1,1,[0,(maxP_duration-NULL_duration)*1e6]);

 end

 if i < l

 arrival_time = [arrival_time
arrival_time(length(arrival_time))+TS_duration];

 end

 case 3 % 3 time slot

 if rand <= probability

 packet_duration(i) = 1622e-6;

 else

 packet_duration(i) = 2*TS_duration + 1e-

Carmen J. Martin Martin – SAPIENZA Università di Roma

175

6*randint(1,1,[0,372]);

 end

 if i < l

 arrival_time = [arrival_time
arrival_time(length(arrival_time))+3*TS_duration];

 end

 case 5 % 5 time slot

 if rand <= probability

 packet_duration(i) = 2870e-6;

 else

 packet_duration(i) = 4*TS_duration + 1e-
6*randint(1,1,[0,370]);

 end

 if i < l

 arrival_time = [arrival_time
arrival_time(length(arrival_time))+5*TS_duration];

 end

 end

 else
 % even packet -> NULL packet as ACK (slave)

 packet_duration(i) = NULL_duration;

 if i < l

 arrival_time = [arrival_time
arrival_time(length(arrival_time))+TS_duration];

 end

 end

end

for i = 2:l

 j = randn*jitter/3; % 99% of values in +or- 3 sigma -> in +or- jitter

 if j < - jitter

 j = - jitter;

 end

 if j > jitter

 j = jitter;

Carmen J. Martin Martin – SAPIENZA Università di Roma

176

 end

 arrival_time(i) = arrival_time(i)+j;
end

DurationVectorBluetooth = 10^6.*packet_duration;

TSFVectorBluetooth = 10^6.*arrival_time;

1 1 .MS Bluetooth Traff ic Generation sample

function
[DurationVectorBluetooth,TSFVectorBluetooth]=MSBluetoothTrafficGenerationsam
ple(l);

%IFs and Max PPDU Duration

 TS_duration = 625e-6;

 jitter = 10e-6;

 maxP_duration = 366e-6;

 NULL_duration = 126e-6;

 % l = 1000;

 probability = 0.7;

 packet_duration = [];

 arrival_time = [];

% Scenario 3:
% 80% packets last 1 time slot
% 15% packets last 3 time slot
% 5% packets last 5 time slot

 arrival_time(1) = 0;

for i = 1:l

 if mod(i,2) == 1
 % odd packet -> data packet (master)

 chooser = rand(1,1);

 if chooser <= 0.8 % 1 time slot

 hmts = 1; % how many time slots

 elseif chooser > 0.95 % 5 time slot

 hmts = 5; % how many time slots

 else % 3 time slot

 hmts = 3; % how many time slots

 end

Carmen J. Martin Martin – SAPIENZA Università di Roma

177

 switch hmts

 case 1 % 1 time slot

 if rand <= probability

 packet_duration(i) = maxP_duration;

 else

 packet_duration(i) = NULL_duration + 1e-
6*randint(1,1,[0,(maxP_duration-NULL_duration)*1e6]);

 end

 if i < l

 arrival_time = [arrival_time
arrival_time(length(arrival_time))+TS_duration];

 end

 case 3 % 3 time slot

 if rand <= probability

 packet_duration(i) = 1622e-6;

 else

 packet_duration(i) = 2*TS_duration + 1e-
6*randint(1,1,[0,372]);

 end

 if i < l

 arrival_time = [arrival_time
arrival_time(length(arrival_time))+3*TS_duration];

 end

 case 5 % 5 time slot

 if rand <= probability

 packet_duration(i) = 2870e-6;

 else

 packet_duration(i) = 4*TS_duration + 1e-
6*randint(1,1,[0,370]);

 end

 if i < l

 arrival_time = [arrival_time
arrival_time(length(arrival_time))+5*TS_duration];

 end

 end

 else

Carmen J. Martin Martin – SAPIENZA Università di Roma

178

 % even packet -> NULL packet as ACK (slave)

 packet_duration(i) = NULL_duration;

 if i < l

 arrival_time = [arrival_time
arrival_time(length(arrival_time))+TS_duration];

 end

 end

end

for i = 2:l

 j = randn*jitter/3; % 99% of values in +or- 3 sigma -> in +or- jitter

 if j < - jitter

 j = - jitter;

 end

 if j > jitter

 j = jitter;

 end

 arrival_time(i) = arrival_time(i)+j;
end

DurationVectorBluetooth = 10^6.*packet_duration;

TSFVectorBluetooth = 10^6.*arrival_time;

12.Perce

% Perceptrom Algorithm

function w =perce(X,y,M,N,C,w_ini)

Ntotal=N*C;

Xper=[ones(1,Ntotal); X(1:M,1:Ntotal)];

[m,Ntotal]=size(Xper);

yper=y;

max_iter=100000; % Maximum allowable number of iterations

rho=1; % Learning rate

w=w_ini; % Initialization of the parameter vector

iter=0; % Iteration counter

mis_clas=Ntotal; % Number of misclassified vectors

Carmen J. Martin Martin – SAPIENZA Università di Roma

179

while(mis_clas>0)&&(iter<max_iter)

 iter=iter+1;

 mis_clas=0;

 gradi=zeros(M+1,1) ;% Inizialitation of the gradient term

 for i=1:Ntotal

 if((Xper(:,i)'*w)*yper(i)<0) % Verification Perceptron cost

 mis_clas=mis_clas+1;

 gradi=gradi-(yper(i)*Xper(:,i)); % Computation of the gradient
term
 end

 end

 w=w-(1/iter)*gradi; %Updating the parameter vector
end

fprintf('\n Iteration Number with Perceptron %d \n',iter);

13 .Pocket

% Pocket Algorithm with Ratchet

function W= Pocket(X,y,M,N,C)

%X=[] Training Feature Vectors Matrix

%y=[] Vector of desired responses

%W=[] Vector of integral pocket weights

%pi=[] Vector of integral perceptron weights

%run_pi= number of consecutive correct classifications using perceptron
weights pi

%run_w= number of consecutive correct classifications using pockets weights
W

%num_okpi= total number of training examples that pi correctly classifies.

%num_okw= total number of training examples that W correctly classifies.

Ntotal=N*C;

Xpocket=[ones(1,Ntotal); X(1:M,1:Ntotal)];

[m,Ntotal]=size(Xpocket);

pi=(zeros(1,m))';

run_pi=0;

run_w=0;

num_okpi=0;

Carmen J. Martin Martin – SAPIENZA Università di Roma

180

num_okw=0;

num_Iteration=80000;

Iteration_counter=1;

index= ceil(Ntotal*rand(1,1)) ;% Randomly pick a training example

x_sample= Xpocket(1:m,index);

y_sample= y(index);

 while ((Iteration_counter<num_Iteration) && (num_okw<Ntotal))

 f_sample=pi'*x_sample;

 if (((f_sample >0) && (y_sample ==1)) || ((f_sample <0)
&& (y_sample ==-1)))

 run_pi=run_pi+1;

 if (run_pi>run_w)

 %Compute num_okpi by checking every training
example

 for i=1:Ntotal

 f_sample_vector(i)=pi'*Xpocket(1:m,i);

 end

 thershold=f_sample_vector.*y;

 correctly_index=find(thershold>0);

 num_okpi=length(correctly_index);

 if (num_okpi>num_okw)

 W=pi;

 run_w=run_pi;

 num_okw=num_okpi;

 if (num_okw==Ntotal)

 break

 end

 end

 end

Carmen J. Martin Martin – SAPIENZA Università di Roma

181

 index= ceil(Ntotal*rand(1,1)); % Randomly pick a
training example

 x_sample= Xpocket(1:m,index);

 y_sample= y(index);

 f_sample=pi'*x_sample;

 else

 pi=pi+y_sample*x_sample;

 run_w=0;

 run_pi=0;

 end

 Iteration_counter=Iteration_counter+1;

 end

 fprintf('\n Iteration Number with Pocket: %d \n',Iteration_counter);

14.SOE

%Sum of Error Squares Estimation

function w= SOE(X,M,N,C)

% Ntotal=N*C;
%
% XSOE=[ones(1,Ntotal); X(1:M,1:Ntotal)];
%
%
% [m,Ntotal]=size(XSOE);
%
% y=zeros(1,Ntotal)';
%
% for t=1:Ntotal
%
% y(t)=W2'*XSOE(1:(M+1),t);
%
% end
%
% W=(zeros(1,m))';
%

Carmen J. Martin Martin – SAPIENZA Università di Roma

182

%
%
% %Compute the weights vector
%
%
% W= inv(XSOE*XSOE')*(XSOE*y);
%

Ntotal=N*C;

XSOEinitial=[ones(1,Ntotal); X(1:M,1:Ntotal)];

Y1=XSOEinitial';

Y=[Y1(1:N,1:M+1);(-1)*Y1(N+1:2*N,1:M+1)];

w=ones(1,M+1)';

y=ones(Ntotal,1);

rho=0.9;

% bmin=0.01;

MaxIteration=1000000;

for k=1:MaxIteration

 error=(Y*w)-y;

 errorpositive=(error+abs(error))/2;

 y=y+2*(rho)*errorpositive;

 w=(inv(Y'*Y)*Y')*y;

 if(Y*w >0)

 break;

 end

end

 fprintf('K=,%d',k);
%
% x=linspace(1,100,1000);
%
% w1=w(1);
%
% w2=w(2);
%
% w3=w(3);
%
% ynuevo =zeros(1,1000);
%
% ynuevo =(-1)*((w2*x)+w1)/w3;
%
% plot(x,ynuevo)
% hold on;
% grid on;
%
% axis([1 50 0 20]);

Carmen J. Martin Martin – SAPIENZA Università di Roma

183

%

15 . SS Bluetooth Traff ic Generation

 function
[DurationVectorBluetooth,TSFVectorBluetooth]=SSBluetoothTrafficGeneration

clear
clc
close all

% Initialization

TS_duration = 625e-6;
jitter = 10e-6;
maxP_duration = 366e-6;
NULL_duration = 126e-6;

l = 20000;
probability = 0.7;

packet_duration = [];
arrival_time = [];

% Scenario 1:
% 100% packets last 1 time slot

for i = 1:l

 if mod(i,2) == 1
 % odd packet -> data packet (master)
 if rand <= probability
 packet_duration(i) = maxP_duration;
 else
 packet_duration(i) = NULL_duration + 1e-
6*randint(1,1,[0,(maxP_duration-NULL_duration)*1e6]);
 end
 else
 % even packet -> NULL packet as ACK (slave)
 packet_duration(i) = NULL_duration;
 end

 arrival_time(i) = (i-1)*TS_duration;

end

for i = 2:l
 j = randn*jitter/3; % 99% of values in +or- 3 sigma -> in +or- jitter
 if j < - jitter
 j = - jitter;
 end
 if j > jitter
 j = jitter;
 end
 arrival_time(i) = arrival_time(i)+j;
end

DurationVectorBluetooth = 10^6.*packet_duration;

TSFVectorBluetooth = 10^6.*arrival_time;

Carmen J. Martin Martin – SAPIENZA Università di Roma

184

16.SS Bluetooth Traff ic Generation sample

function
[DurationVectorBluetooth,TSFVectorBluetooth]=SSBluetoothTrafficGenerationsam
ple(l)

% clear
% clc
% close all
%

% Initialization

TS_duration = 625e-6;
jitter = 10e-6;
maxP_duration = 366e-6;
NULL_duration = 126e-6;

% l = 1000;
probability = 0.7;

packet_duration = [];
arrival_time = [];

% Scenario 1:
% 100% packets last 1 time slot

for i = 1:l

 if mod(i,2) == 1
 % odd packet -> data packet (master)
 if rand <= probability
 packet_duration(i) = maxP_duration;
 else
 packet_duration(i) = NULL_duration + 1e-
6*randint(1,1,[0,(maxP_duration-NULL_duration)*1e6]);
 end
 else
 % even packet -> NULL packet as ACK (slave)
 packet_duration(i) = NULL_duration;
 end

 arrival_time(i) = (i-1)*TS_duration;

end

for i = 2:l
 j = randn*jitter/3; % 99% of values in +or- 3 sigma -> in +or- jitter
 if j < - jitter
 j = - jitter;
 end
 if j > jitter
 j = jitter;
 end
 arrival_time(i) = arrival_time(i)+j;
end

DurationVectorBluetooth = 10^6.*packet_duration;

TSFVectorBluetooth = 10^6.*arrival_time;

Carmen J. Martin Martin – SAPIENZA Università di Roma

185

17. Wi-Fi Traff ic Adquisit ion

function [TSFVector,DurationVector] = WIFITrafficAcquisition(filename)

fid = fopen (filename,'a+');
acqstring = fileread(filename);
index1 = regexp(acqstring,'Duration');
PacketsCaptured = length(index1);
index2 = regexp(acqstring,'Period :');
indexlast = index2-1;
DurationVector = zeros(1,PacketsCaptured);

for i0 = 1:PacketsCaptured

 textdurationline = acqstring(index1(i0):indexlast(i0));
 textscannedduration = textscan(textdurationline,'%*s %*s %f %*s');
 DurationVector(i0) = cell2mat(textscannedduration);

end

fclose(fid);

fid = fopen (filename,'a+');
acqstringTSF = fileread(filename);
indexTSF1 = regexp(acqstringTSF,'TSF');
PacketsCaptured = length(indexTSF1);
indexTSF2 = regexp(acqstring,'Rate');
indexlastTSF = indexTSF2-1;
TSFVector = zeros(1,PacketsCaptured);

for j0 = 1:PacketsCaptured

 textTSFline = acqstringTSF(indexTSF1(j0):indexlastTSF(j0));
 textscannedTSF = textscan(textTSFline,'%*s %*s %f %*s');
 TSFVector(j0) = cell2mat(textscannedTSF);
end

TSFVector = TSFVector - TSFVector(1);
fclose(fid);

18.Wi-Fi Training Generation

function[TSFVectorWIFI,DurationVectorWIFI]=WIFITrainingGeneration

filename1 = 'VAIOHPATHSKYPEUTUBEOPENOFFICEINFOCOM3.txt';

[TSFVector1,DurationVector1]=import_WiFi(filename1);

filename2 = 'VAIOHPATHSKYPEUTUBEOPENOFFICEINFOCOM2.txt';

[TSFVector2,DurationVector2]=import_WiFi(filename2);

filename3 = 'VAIOHPdv6000DownINFOCOM.txt';

[TSFVector3,DurationVector3]=import_WiFi(filename3);

filename4 = 'VAIODownINFOCOM.txt';

Carmen J. Martin Martin – SAPIENZA Università di Roma

186

[TSFVector4,DurationVector4]=import_WiFi(filename4);

filename5 = 'VAIOATHSKYPEUTUBEINFOCOM3.txt';

[TSFVector5,DurationVector5]=import_WiFi(filename5);

filename6 = 'VAIOATHSKYPEUTUBEINFOCOM2.txt';

[TSFVector6,DurationVector6]=import_WiFi(filename6);

filename7 = '2503capture1.txt';

[TSFVector7,DurationVector7]=import_WiFi(filename7);

filename8 = '2503capture2.txt';

[TSFVector8,DurationVector8]=import_WiFi(filename8);

filename9 = '2503capture3.txt';

[TSFVector9,DurationVector9]=import_WiFi(filename9);

filename10 = '2503capture4.txt';

[TSFVector10,DurationVector10]=import_WiFi(filename10);

filename11 = '2503capture5.txt';

[TSFVector11,DurationVector11]=import_WiFi(filename11);

filename12 = '2503capture6.txt';

[TSFVector12,DurationVector12]=import_WiFi(filename12);

filename13 = '2503capture7.txt';

[TSFVector13,DurationVector13]=import_WiFi(filename13);

filename14 = '2503capture8.txt';

[TSFVector14,DurationVector14]=import_WiFi(filename14);

filename15 = '2503capture9.txt';

[TSFVector15,DurationVector15]=import_WiFi(filename15);

filename16 = '2503capture10.txt';

[TSFVector16,DurationVector16]=import_WiFi(filename16);

DurationVectorWIFI=[DurationVector1 DurationVector2 DurationVector3
DurationVector4 DurationVector5 DurationVector6 DurationVector7
DurationVector8 DurationVector9 DurationVector10 DurationVector11

Carmen J. Martin Martin – SAPIENZA Università di Roma

187

DurationVector12 DurationVector13 DurationVector14 DurationVector16];

TSFVector2 =
TSFVector2+TSFVector1(length(TSFVector1))+DurationVector1(length(DurationVec
tor1))+ 3000;

TSFVector3 =
TSFVector3+TSFVector1(length(TSFVector1))+DurationVector1(length(DurationVec
tor1))+TSFVector2(length(TSFVector2))+DurationVector2(length(DurationVector2
))+3000;
TSFVector4 =
TSFVector4+TSFVector1(length(TSFVector1))+DurationVector1(length(DurationVec
tor1))+TSFVector2(length(TSFVector2))+DurationVector2(length(DurationVector2
))+TSFVector3(length(TSFVector3))+DurationVector3(length(DurationVector3))+3
000;
TSFVector5 =
TSFVector5+TSFVector1(length(TSFVector1))+DurationVector1(length(DurationVec
tor1))+TSFVector2(length(TSFVector2))+DurationVector2(length(DurationVector2
))+TSFVector3(length(TSFVector3))+DurationVector3(length(DurationVector3))+T
SFVector4(length(TSFVector4))+DurationVector4(length(DurationVector4))+3000;
TSFVector6 =
TSFVector6+TSFVector1(length(TSFVector1))+DurationVector1(length(DurationVec
tor1))+TSFVector2(length(TSFVector2))+DurationVector2(length(DurationVector2
))+TSFVector3(length(TSFVector3))+DurationVector3(length(DurationVector3))+T
SFVector4(length(TSFVector4))+DurationVector4(length(DurationVector4))+TSFVe
ctor5(length(TSFVector5))+DurationVector5(length(DurationVector5))+3000;

TSFVector7 =
TSFVector7+TSFVector1(length(TSFVector1))+DurationVector1(length(DurationVec
tor1))+TSFVector2(length(TSFVector2))+DurationVector2(length(DurationVector2
))+TSFVector3(length(TSFVector3))+DurationVector3(length(DurationVector3))+T
SFVector4(length(TSFVector4))+DurationVector4(length(DurationVector4))+TSFVe
ctor5(length(TSFVector5))+DurationVector5(length(DurationVector5))+TSFVector
6(length(TSFVector6))+DurationVector6(length(DurationVector6))+3000;
TSFVector8=
TSFVector8+TSFVector1(length(TSFVector1))+DurationVector1(length(DurationVec
tor1))+TSFVector2(length(TSFVector2))+DurationVector2(length(DurationVector2
))+TSFVector3(length(TSFVector3))+DurationVector3(length(DurationVector3))+T
SFVector4(length(TSFVector4))+DurationVector4(length(DurationVector4))+TSFVe
ctor5(length(TSFVector5))+DurationVector5(length(DurationVector5))+TSFVector
6(length(TSFVector6))+DurationVector6(length(DurationVector6))+
TSFVector7(length(TSFVector7))+DurationVector7(length(DurationVector7))+3000
;

TSFVector9=
TSFVector9+TSFVector1(length(TSFVector1))+DurationVector1(length(DurationVec
tor1))+TSFVector2(length(TSFVector2))+DurationVector2(length(DurationVector2
))+TSFVector3(length(TSFVector3))+DurationVector3(length(DurationVector3))+T
SFVector4(length(TSFVector4))+DurationVector4(length(DurationVector4))+TSFVe
ctor5(length(TSFVector5))+DurationVector5(length(DurationVector5))+TSFVector
6(length(TSFVector6))+DurationVector6(length(DurationVector6))+
TSFVector7(length(TSFVector7))+DurationVector7(length(DurationVector7))+TSFV
ector8(length(TSFVector8))+DurationVector8(length(DurationVector8))+3000;

TSFVector10=
TSFVector10+TSFVector1(length(TSFVector1))+DurationVector1(length(DurationVe
ctor1))+TSFVector2(length(TSFVector2))+DurationVector2(length(DurationVector
2))+TSFVector3(length(TSFVector3))+DurationVector3(length(DurationVector3))+
TSFVector4(length(TSFVector4))+DurationVector4(length(DurationVector4))+TSFV
ector5(length(TSFVector5))+DurationVector5(length(DurationVector5))+TSFVecto
r6(length(TSFVector6))+DurationVector6(length(DurationVector6))+
TSFVector7(length(TSFVector7))+DurationVector7(length(DurationVector7))+TSFV
ector8(length(TSFVector8))+DurationVector8(length(DurationVector8))+TSFVecto
r9(length(TSFVector9))+DurationVector9(length(DurationVector9))+3000;

TSFVector11=

Carmen J. Martin Martin – SAPIENZA Università di Roma

188

TSFVector11+TSFVector1(length(TSFVector1))+DurationVector1(length(DurationVe
ctor1))+TSFVector2(length(TSFVector2))+DurationVector2(length(DurationVector
2))+TSFVector3(length(TSFVector3))+DurationVector3(length(DurationVector3))+
TSFVector4(length(TSFVector4))+DurationVector4(length(DurationVector4))+TSFV
ector5(length(TSFVector5))+DurationVector5(length(DurationVector5))+TSFVecto
r6(length(TSFVector6))+DurationVector6(length(DurationVector6))+
TSFVector7(length(TSFVector7))+DurationVector7(length(DurationVector7))+TSFV
ector8(length(TSFVector8))+DurationVector8(length(DurationVector8))+TSFVecto
r9(length(TSFVector9))+DurationVector9(length(DurationVector9))+
TSFVector10(length(TSFVector10))+DurationVector10(length(DurationVector10))+
3000;
TSFVector12=
TSFVector12+TSFVector1(length(TSFVector1))+DurationVector1(length(DurationVe
ctor1))+TSFVector2(length(TSFVector2))+DurationVector2(length(DurationVector
2))+TSFVector3(length(TSFVector3))+DurationVector3(length(DurationVector3))+
TSFVector4(length(TSFVector4))+DurationVector4(length(DurationVector4))+TSFV
ector5(length(TSFVector5))+DurationVector5(length(DurationVector5))+TSFVecto
r6(length(TSFVector6))+DurationVector6(length(DurationVector6))+
TSFVector7(length(TSFVector7))+DurationVector7(length(DurationVector7))+TSFV
ector8(length(TSFVector8))+DurationVector8(length(DurationVector8))+TSFVecto
r9(length(TSFVector9))+DurationVector9(length(DurationVector9))+
TSFVector10(length(TSFVector10))+DurationVector10(length(DurationVector10))+
TSFVector11(length(TSFVector11))+DurationVector11(length(DurationVector11))+
3000;
TSFVector13=
TSFVector13+TSFVector1(length(TSFVector1))+DurationVector1(length(DurationVe
ctor1))+TSFVector2(length(TSFVector2))+DurationVector2(length(DurationVector
2))+TSFVector3(length(TSFVector3))+DurationVector3(length(DurationVector3))+
TSFVector4(length(TSFVector4))+DurationVector4(length(DurationVector4))+TSFV
ector5(length(TSFVector5))+DurationVector5(length(DurationVector5))+TSFVecto
r6(length(TSFVector6))+DurationVector6(length(DurationVector6))+
TSFVector7(length(TSFVector7))+DurationVector7(length(DurationVector7))+TSFV
ector8(length(TSFVector8))+DurationVector8(length(DurationVector8))+TSFVecto
r9(length(TSFVector9))+DurationVector9(length(DurationVector9))+
TSFVector10(length(TSFVector10))+DurationVector10(length(DurationVector10))+
TSFVector11(length(TSFVector11))+DurationVector11(length(DurationVector11))+
TSFVector12(length(TSFVector12))+DurationVector12(length(DurationVector12))+
3000;
TSFVector14=
TSFVector14+TSFVector1(length(TSFVector1))+DurationVector1(length(DurationVe
ctor1))+TSFVector2(length(TSFVector2))+DurationVector2(length(DurationVector
2))+TSFVector3(length(TSFVector3))+DurationVector3(length(DurationVector3))+
TSFVector4(length(TSFVector4))+DurationVector4(length(DurationVector4))+TSFV
ector5(length(TSFVector5))+DurationVector5(length(DurationVector5))+TSFVecto
r6(length(TSFVector6))+DurationVector6(length(DurationVector6))+
TSFVector7(length(TSFVector7))+DurationVector7(length(DurationVector7))+TSFV
ector8(length(TSFVector8))+DurationVector8(length(DurationVector8))+TSFVecto
r9(length(TSFVector9))+DurationVector9(length(DurationVector9))+
TSFVector10(length(TSFVector10))+DurationVector10(length(DurationVector10))+
TSFVector11(length(TSFVector11))+DurationVector11(length(DurationVector11))+
TSFVector12(length(TSFVector12))+DurationVector12(length(DurationVector12))+
TSFVector13(length(TSFVector13))+DurationVector13(length(DurationVector13))+
3000;

 TSFVector15=
TSFVector15+TSFVector1(length(TSFVector1))+DurationVector1(length(DurationVe
ctor1))+TSFVector2(length(TSFVector2))+DurationVector2(length(DurationVector
2))+TSFVector3(length(TSFVector3))+DurationVector3(length(DurationVector3))+
TSFVector4(length(TSFVector4))+DurationVector4(length(DurationVector4))+TSFV
ector5(length(TSFVector5))+DurationVector5(length(DurationVector5))+TSFVecto
r6(length(TSFVector6))+DurationVector6(length(DurationVector6))+
TSFVector7(length(TSFVector7))+DurationVector7(length(DurationVector7))+TSFV
ector8(length(TSFVector8))+DurationVector8(length(DurationVector8))+TSFVecto
r9(length(TSFVector9))+DurationVector9(length(DurationVector9))+
TSFVector10(length(TSFVector10))+DurationVector10(length(DurationVector10))+
TSFVector11(length(TSFVector11))+DurationVector11(length(DurationVector11))+

Carmen J. Martin Martin – SAPIENZA Università di Roma

189

TSFVector12(length(TSFVector12))+DurationVector12(length(DurationVector12))+
TSFVector13(length(TSFVector13))+DurationVector13(length(DurationVector13))+
TSFVector14(length(TSFVector14))+DurationVector14(length(DurationVector14))+
3000;

TSFVector16=
TSFVector16+TSFVector1(length(TSFVector1))+DurationVector1(length(DurationVe
ctor1))+TSFVector2(length(TSFVector2))+DurationVector2(length(DurationVector
2))+TSFVector3(length(TSFVector3))+DurationVector3(length(DurationVector3))+
TSFVector4(length(TSFVector4))+DurationVector4(length(DurationVector4))+TSFV
ector5(length(TSFVector5))+DurationVector5(length(DurationVector5))+TSFVecto
r6(length(TSFVector6))+DurationVector6(length(DurationVector6))+
TSFVector7(length(TSFVector7))+DurationVector7(length(DurationVector7))+TSFV
ector8(length(TSFVector8))+DurationVector8(length(DurationVector8))+TSFVecto
r9(length(TSFVector9))+DurationVector9(length(DurationVector9))+
TSFVector10(length(TSFVector10))+DurationVector10(length(DurationVector10))+
TSFVector11(length(TSFVector11))+DurationVector11(length(DurationVector11))+
TSFVector12(length(TSFVector12))+DurationVector12(length(DurationVector12))+
TSFVector13(length(TSFVector13))+DurationVector13(length(DurationVector13))+
TSFVector14(length(TSFVector14))+DurationVector14(length(DurationVector14))+
TSFVector15(length(TSFVector15))+DurationVector15(length(DurationVector15))+
3000;
TSFVectorWIFI=[TSFVector1 TSFVector2 TSFVector3 TSFVector4 TSFVector5
TSFVector6 TSFVector7 TSFVector8 TSFVector9 TSFVector10 TSFVector11
TSFVector12 TSFVector13 TSFVector14 TSFVector16];

