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Chapter 1 

 

INTRODUCTION 

 

 

1 .1  Cognitive Radio  

 

Cognitive means related to knowledge – accumulated information derived from 

experience or learned through introspection. Cognitive development focuses in studying 

thinking processes and the behavior derived of those. In this sense, “cognitive” is a fitting 

adjective to describe the paradigm of wireless communications, where both networks and 

nodes change specific parameters of transmission and reception to adjust their functioning to 

a mechanism of observation and learning from environmental factors –such as, 

radiofrequency spectrum, user behavior and network status. 

Over the last few years, many research studies shown that spectrum use is related to 

timing and location. Specific assignation of the spectrum poses a problem: frequencies 

assigned to services with low use, are not available to unauthorized users, even when these 

transmission will not cause any interference in this un-occupied service. This used to be the 

reason why unauthorized users made use of bands that required authorization: they assumed 

their work will cause no interference, since whenever a legitimate user needed to make a 

transmission; they could jump to another frequency-band to continue their transmissions. 

Cognitve radio was designed with the intention of enabling users to seize these temporary 

voids in the electromagnetic spectrum. 
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Depending on the environment and set of parameters considered to make a decision 

about alterations to transmission and reception, we can distinguish some types of cognitive 

radio. The term “full cognitive radio” (or Mitola’s Radio) refers to that in which any observed 

parameter in a wireless node or network is taken into account for decision-making. On the 

other hand, “spectrum detecting cognitive radio” observes only radiofrequency spectrum 

status and makes a decision based on this parameter; depending on spectrum’s availability, 

notice the following subtypes: 

 Licensed bands: when cognitive radio can use bands assigned to 

licensed users, asides from free access bands like ISM or UNII1. 

 Unlicensed bands: when only free access parts of the radio frequency 

spectrum can be used.  

 

The most relevant requisite for cognitive radio functioning is their ability to detect 

unused spectrum and used it without provoking negative interference for other users. The 

best way to find these “usage voids” is detecting legitimate authorized users. Detection 

techniques can be categorized as follows:  

• Transmission Detection: cognitive radios need to possess the ability to 

determine if there is signal from any users accessing a part of the spectrum.  

• Cooperative Detection: different cognitive radio users periodically exchange 

information about detection of principal users. 

• Interference-based detection: Another relevant function is spectrum 

administration –using bandwidth in a way that fits best the QoS required by the user, and 

selecting this bandwidth amongst those available. There are two steps to spectrum 

administration: spectrum analysis and spectrum decision. The first one refers to identifying 

the characteristics of each available band, assessing for advantages or obstacles (such as delay 

and error probability). The second step compares characteristics between bands with user’s 

needs and evaluates which one is will make the best fit.  

                                                                    
1 Unlicensed National Information Infrastructure 
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Figure 1.1 -  Cognitive Radio operation 

 A fundamental advantage of cognitive radio is spectral mobility, the process by which 

a cognitive radio changes its frequency of transmission or reception. Cognitive radios are 

designed to change bands constantly, choosing the best available options in a way that is 

imperceptible for users.  Finally, another defining aspect of cognitive radios is the ability to 

share the spectrum. This is achieved by a schematic method of spectrum’s distribution that is 

fair and egalitarian for every cognitive radio user without interfering with authorized user’s 

transmissions. This poses one of the greatest challenges of designing a cognitive radio, as do 

generic issues of media access we face nowadays. 

 

1 .2  Unlicensed Bands 

The ISM (Industrial Scientific and Medical) bands were defined by ITU-R2. Three 

sub-bands composed the ISMs: 

 902-928 MHz 

  2400-2483.5 MHz 

 5725-5850 MHz 

                                                                    
2 International Telecommunication Union- Radiocommunication Sector 
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Figure 1.2 - Industrial Scientific and Medical (ISM) bands 

 

In the beginning, ISM radio bands were assigned uniquely to industrial, medical 

and scientific endeavors. In 1985, the Federal Communications Commission (FCC) issued 

rules permitting "intentional radiators" to use these bands, however some restrictions were 

outlined: 

1. Maximum transmitter output is 1W (30 dBm) . 

2. Maximum EIRP3 is 4W (36 dBm) . 

3. For fixed point to point operation in ISM2.4, peak output 

need only be reduced by 1 dBm for every 3 dBi of antenna gain above 6 . 

4. In ISM5.8, you can apply all the antenna gain you want 

without reduction in output power. 

The next table shows the common devices operating in the ISM bands: 

Table 1.1 -  Devices operating in the ISM bands 

 

                                                                    
3 Equivalent Isotropically Radiated Power 

902-928 MHz 2.4-2.4835 GHz 5.725-5.85 GHz 

• Cordless Phones 

• Cordless Headphones 

• Surveillance systems 

 

• IEEE LAN Standards. 

• Audio/video signal 

repeaters 

• Remote garage openers 

• Microwave oven 

 

• Reserved for high bit rate 

networking devices 

• IEEE/ETSI LAN 

Standards 
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Interest in using these bands has been stimulated by several factors that differ 

substantially for the European approach of conscientious, but time consuming 

standardization. Most importantly, there is almost a complete absence of user restrictions 

(no registration procedure, no qualification of end users) as to where the products can be 

used. The absence of license fees also contributes to financial attractiveness of products.  

 

1 .3  Background and Motivations 

 

As part of the incessant pursuit to guarantee completely aware wireless 

communication behavior, automatic  network recognition has become a promising attribute 

dedicated to integrate cognitive mechanisms over the network layer, enabling us to come 

closer to our main objective: Cognitive Networking . 

Certainly, as detailed in Section 1.1, spectrum sensing plays a key role in a Cognitive 

Radio, but in order to provide a qualitative description of the spectrum, air interfaces 

classification is also performed [1] .  

This work proposes an automatic recognition approach base on extraction of 

features that best reveal MAC sublayer communication procedures. That means that in 

order to recognize the different technologies operating in the ISM band, an analysis was 

performed at the level of the data link layer, with the goal of finding features with sufficient 

discriminatory power so that optimal classification criterion that will report good results –in 

a simple and low cost fashion.  

This approach include two fundamental phases: choice and extraction of features, 

and implementation of a linear classification algorithm that decides which technologies are in 

the air –reporting a percentage. 

Work was focused in Wi-Fi versus Bluetooth recognition. In this case, four different 

algorithms were implemented and tested. This stage of evaluation will demonstrate the 

validity of the chosen features, as well as the performance of each of the classification 

algorithms utilized.  
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1 .4 Organization of  the work 

 

In Chapter 2, an exhaustive study about WLAN (IEEE802.11) was developed with 

the objective of analyzing fundamental characteristics that reflect communications 

procedures of the MAC sublayer, so that possible features to use on the algorithm could be 

identified. The study of this technology afforded us a better understanding and knowledge of 

relevant aspects and directing this  work to a certain destination. 

 

On the other hand, Chapter 3 exposes a complete description of pattern recognition, 

as well as linear classification algorithms that are commonly utilized. In Chapter 4 exhaustive 

definition of the issue of automatic recognition, with details about generation of training sets 

and implementation of the classification block. Later on, the experimentation section is 

presented with a further analysis stage. 

 

Finally, conclusions and directions are presented to expose the results of the chosen 

approach and pointing out to new and interesting research journeys.  
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Chapter 2  

 

WIRELESS LAN MEDIUM ACCESS CONTROL  

(MAC) AND PHYSICAL LAYER (PHY) 

SPECIFICATIONS 

 

 

 2.1    Overview     

 

A Wireless LAN [2] (Local Area Network - WLAN) is a data communication 

system that can be use as an alternative to wired LANs or as an extension to an existing one. 

Coverage usually extends between 10 a 100 meters; this limited reach affords lower 

transmission power that allows the use of unlicensed bands. WLANs operate under 

radiofrequency technology, which makes them ideal for greater flexibility, mobility, 

immediate access for temporal users and ease of installation. 

The IEEE (Institute of Electronics and Electrical Engineering) by way of one of 

their standards (the 802.11 specifically) regulates functioning of WLANs. Standard 

specifications are guided by the OSI (Open System Interconnection) model, that focus in its 

inferior levels (Physical Layer and MAC Sub-layer ). 

This standard [3] is part of a list enforceable for local and metropolitan area 

networks. The relationship between this and other standards can be illustrated as follows.  
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Figure 2.1 -  IEEE 802 Family 

The ANSI/IEEE 802.11, 1999 Edition, is a version of the original IEEE 802.11 

standard, published in 1997, with modifications such as deletion of redundant management 

item and completion of one of the annexes.  

The ANSI/IEEE 802.11, 1999 Edition defines protocol and compatible interaction 

of data communications equipment via the air, radio or infrared, on a local area network 

(LAN) using the carrier sense multiple access protocol with collision avoidance 

(CSMA/CA) medium sharing mechanism. The medium access control (MAC) supports 

operations, either under access point control or between independent stations. The protocol 

includes authentication, association, and re-association services, optional 

encryption/decryption procedure, power management and a point coordination function for 

time-bounded transfer data. 

Much in the same way that the MAC sub-layer establishes rules to determine 

medium access and data transmission, details of transmission and reception are regulated by 

the Physical Layer (PHY). 

The original version of the IEEE 802.11 standard became obsolete and was fine 

tuned in 1999. Back then, it specified two net bit rates of 1 or 2 megabits per second (Mbit/s), 

plus forward error correction code and only three alternative physical layer technologies: 

diffuse infrared operating at 1 Mbit/s; frequency-hopping spread spectrum operating at 1 

Mbit/s or 2 Mbit/s; and direct-sequence spread spectrum operating at 1 Mbit/s or 2 Mbit/s. 

The latter two radio technologies used microwave transmission over the Industrial Scientific 

Medical frequency band at 2.4 GHz. Some earlier WLAN technologies used lower 
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frequencies, such as the U.S. 900 MHz ISM band. 

In 2003, task group TGma was authorized to "roll up" many of the amendments to 

the 1999 version of the 802.11 standard. REVma or 802.11ma, as it was called, created a single 

document that merged 8 amendments (802.11a,b,d,e,g,h,i,j) with the base standard. Upon 

approval on March 8, 2007, 802.11REVma was renamed to the current base standard IEEE 

802.11-2007. 

 

Currently, different types of PHYs are in use under 802.11, with a broad range of 

versions that can be categorized by utilized band, modulation type and coding; this 

characteristics determine distinct transmission rates and throughputs. A brief description of 

the available versions is provided here [2]:  

 

802.11  a  

The 802.11a standard uses the same data link layer protocol and frame format as the 

original standard, but an OFDM based air interface (physical layer). It operates in the 

5 GHz band with a maximum net data rate of 54 Mbit/s. 

 

Since the 2.4 GHz band is heavily used to the point of being crowded, using the 

relatively un-used 5 GHz band gives 802.11a a significant advantage. However, this high 

carrier frequency also brings a disadvantage: the effective overall range of 802.11a is less than 

that of 802.11b/g. In theory, 802.11a signals are absorbed more readily by walls and other solid 

objects in their path due to their smaller wavelength and, as a result, cannot penetrate as far 

as those of 802.11b. In practice, 802.11b typically has a higher range at low speeds (802.11b will 

reduce speed to 5 Mbit/s or even 1 Mbit/s at low signal strengths). However, at higher 

speeds, 802.11a often has the same or greater range due to less interference. 
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802.11b 

802.11b has a maximum raw data rate of 11 Mbit/s and uses the same media access 

method defined in the original standard. 802.11b products appeared on the market in early 

2000, since 802.11b is a direct extension of the modulation technique defined in the original 

standard. The dramatic increase in throughput of 802.11b (compared to the original 

standard) along with simultaneous substantial price reductions led to the rapid acceptance of 

802.11b as the definitive wireless LAN technology. 

While using a spread spectrum technique based on DSSS, the 802.11b extension 

introduces CCK (Complementary Code Keying) to achieve rates of  5,5 and y 11 Mbps . This 

standard also supports PBCC (Packet Binary Convolutional Coding) as an optional. All 

802.11b devices must maintain compatibility with prior DSSS equipment, as specified in the 

original IEEE 802.11 regulation, with rates of 1 and 2 Mbps. 

802.11c   

The “c” protocol is used for communication between different networks or different 

types through a wireless connection, as well as connection between distant buildings. The 

802.11c is a modified version of 802.1d that offers no advantages for the general public; but 

allows to combine 802.1d with devices that comply with 802.11 (on the Data Link Layer). 

While of less common use than its two predecessors, this protocol offers advantages –in time 

and budget- over optic fiber installations to establish larger distance communications.  

802.11d  

A supplement to 802.11, this standard is designed to support international use over 

802.11 local networks. The idea is to allow dispositive to interchange information using the 

frequency range permitted by their country of origin.   

802.11e   

This standard offers real time applications, through its Quality of Service warranty. 

802.11e is designed to support real time traffic regardless of the environment or situation. The 

objective with this standard was to introduce new mechanisms on the MAC layer in order to 

support services that will require QoS. To achieve this, Hybrid Coordination Function 

(HCF) with two types of access was introduced:  

▪ (EDCA) Enhanced Distributed Channel Access, equivalent a 
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DCF. 

▪ (HCCA) HCF Controlled Access, equivalent to PCF. 

In this new standard four access categories are defined (in descending priority 

order): 

▪ Background (AC_BK) 

▪ Best Effort (AC_BE) 

▪ Video (AC_VI) 

▪ Voice (AC_VO) 

To achieve traffic differentiation medium access times and contention window sizes 

are defined for each category. 

802.11 f   

Recommended for access point providers, it improves access point compatibility. 

Utilizes the IAPP4 protocol to achieve optimal itinerancy: allowing traveling users to change 

between access points while on the move, regardless of the brand of the access points on 

network infrastructure. 

802.11g  

Made public in June 2003, 802.11g is an evolution of the b standard that uses the 2.4 

GHz band with a maximum theoretical rate of 54 Mbps. It is compatible with the 802.11b 

and uses the same frequencies. Currently in the market, there are “g” standard devices with 

up to a half watt power, which will support communications in a range of 50 kilometers, 

provided the use of parabolic antennas or appropriate radio equipment. 

802.11h  

The 802.11h specification for WLANs, developed by Workgroup 11 of the IEEE 

LAN/MAN Committee (IEEE 802) and made public in October 2003, was designed to 

troubleshoot issues derived from coexistence of 802.11 networks and Satellite / Radar 

systems.  

This development follows ITU recommendations made after the ERO (European 
                                                                    
4  Inter –Access Point Protocol 



  

Carmen J. Martin Martin – SAPIENZA Università di Roma 

22 

Radiocommunications Office) requirements to minimize the impact of opening the 5 GHz 

band to ISM applications.The 802.11h incorporates the capability to manage dynamically 

both frequency and power of transmissions (Dynamic Frequency Selection and Transmitter 

Power Control). DFS allows WLANs operating on 5 GHz band to avoid co-channel 

interference with Radar systems and ensures uniform utilization of available channels; while 

TPC enforces required potency limitations for each regional channel, avoiding interference 

with satellite systems.  

802.11 i   

Developed to counter the current vulnerability of authentication and coding 

protocols, encompasses the following protocols: 802.1x, TKIP (Temporal Key Integrity 

Protocol) and AES (Advanced Encryption Standard). The 802.11i is implemented on WPA2. 

802.11 j   

An equivalent of 802.11h, designed to comply with Japanese regulations.  

802.11k   

Allows commuters and wireless access points to value and calculate the 

radiofrequency resources of a WLANs clients, improving its management. Design to be 

implemented as software, LAN equipment is able to support it after updates. For the 

standard to be effective, clients (WLAN adapters and cards) and infrastructure (access 

points and commuters) must be compatible. 

802.11n  

In January 2004, IEEE announced the formation of workgroup 802. 11 to develop a 

revision of the standard. Transmission rate could reach 600 Mbps and it will be up ten times 

faster than 802.11a and 802.11g, and at times faster than 802.11b. Also, improvements in range 

are expected thanks to the MIMO Multiple Input – Multiple Output technology, which 

integrates several antennas to allow use of multiple channels during transmission. A series of 

delays has plagued the development with a new deadline on November 2009. Unlike other 

versions, 802.11n can work on double frequency bands (2.4 GHz and 5 GHz). This capability 

makes the new standard compatible with all previous versions.   

802.11p  

This standard operates on the 5.9 GHz frequency band, recommended for 
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automobiles it will be the building block of short range communications in the United 

States. DSRC5 technology will allow data interchange between vehicles and road 

infrastructure.   

802.11r   

Also known as Fast Basic Service Set Transition, its most relevant characteristic is 

allowing the network to establish security protocols that identify a device in a new Access 

Point before abandoning the previous one. This function provides a transition time of less 

than 50 milliseconds. In a VoIP communication, there will be no perceptible interruptions. 

802.11s   

Defines manufacturer interoperability regarding Mesh protocols (networks that 

combine two topologies: ad-hoc and infrastructure). Because there is no established 

standard, each manufacturer has its own mesh generation mechanism.  

802.11v   

IEEE 802.11v (coming in 2010) will allow remote configuration of client devices, 

providing in turn centralized (similar to a cellular network) or distributed (through a layer 2 

mechanisms) station management. This includes network ability to supervise, configure and 

update client stations. Besides management improvement, new capabilities of the 11v are: 

energy savings for PDAs, positioning for services that depend on location, temporization to 

support fine caliber applications and coexistence between different technologies within the 

same device. 

802.11w  

Still in development, it’s being designed to improve the layer of medium access 

control, to increase security on authentication and coding protocols. Currently, WLANs 

send system information in unprotected frames that makes the network vulnerable. This 

standard is created to protect networks against interruptions caused malware that creates 

fake request from unassociated stations that look like they were sent from a valid device. The 

11v attempts to extend the protection from the data to the management frames to ensure 

security on the network’s vital operations. 

                                                                    
5 Dedicated short-range communications 
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802.11y   

Published on November 2008, allows operation on 3650 to 3700 MHz bands (except 

when interference can be generated) in the United States. Three new concepts are wrapped 

around this standard: Contention Base Protocol (CBP), Extended Channel Switch 

Announcement (ECSA), and Dependent Station Enablement (DSE). CBP includes 

improvements in the detection mechanisms of portability. ECSA provides a mechanism for 

the APs to notify their stations its intention to switch channels or bandwidths. Lastly, DSE 

is used to manage licenses.  

 

2 .2   General  Description of  the architecture 

 

According to the IEEE 802.11 standard [3], the WLAN’s architecture consists in 

various components interacting to create a WLAN that supports station mobility 

transparently to upper layers. 

The Basic Service Set (BSS) is the building block of an IEEE 802.11 LAN. The 

following figure displays two BSSs, each one with two client stations. 

 

 

 

 

 

 

 

 

 

Figure 2.2 -  BSS Structure 
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The ovals describe BSSs coverage areas through which member stations can remain 

communicated. If a member station moves out of range, it will no longer be able to establish 

communication with other BSS’s members. 

 

2 .2 .1  The independent BSS as an ad hoc network 

 

The independent BSS (IBSS) is the most basic IEEE 802.11 LAN type. The 

smallest IEEE 802.11 LAN could consist of two stations. Figure 2.2 shows two IBSSs. This 

modality of IEEE 802.11 operation is possible when stations are able to communicate 

directly. Because this type of LAN is many times built without pre-planning, this 

implementation is often referred to as an “ad hoc network”.  

 

2 .2 .2  Distribution System Concepts 

 

A BSS can also be part of a larger network built with multiple BSSs. The 

architectural component utilized to interconnect several BSSs is the Distribution System 

(DS). IEEE 802.11 separates logically the wireless medium (WM) from the Distribution 

System Medium (DSM). The IEEE 802.11 LAN architecture is independent of the physical 

characteristics and implementation specifications. The DS allows mobility to the devices, 

purveying the necessary logical services to manage address to destination mapping and 

seamless integration of multiple BSSs.  

The Access Point (AP) is the station (STA) that gives access to the DS, offering 

more functionalities than a simple station.  
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Figure 2.3 - DS and AP 

 

The data moves between BSS and Ds, through the AP. Every AP is also and station 

and as such, an addressable entity. Both DS and BSSs allow the IEEE 802.11 to create a 

wireless network of arbitrary size and complexity, or an Extended Service Set Network. 

The key concept here is that an ESS network is at the same LLC (Logical Link 

Control) Layer that IBSS network.  The interior stations of an ESS can communicate, as 

well as the mobile stations can move from a BSS to another internally on the ESS- while 

being transparent to the LLC.  

             

 

Figure 2.4 -  ESS Structure 



  

Carmen J. Martin Martin – SAPIENZA Università di Roma 

27 

 

In this setting, any of these are possible: 

o BSSs could partially overlap. 

o BSSs could be physically separated. 

One or more IBSS or ESS networks could be present in the very same physical 

space.  

 2 .2 .3  Integration with wired LANs 

 

To integrate IEEE 802.11 architecture with a traditional wired LAN, a logical 

component needs to be introduced: a portal. The portal is a logical point through which 

MSDUs originated in a non-IEEE 802.11 LAN enter the IEEE 802.11 DS.  As 

displayed on the figure 2.5, all data coming from the 802.xLAN enters the IEEE 802 

architecture through the portal.  The portal provides logical integration between IEEE 

802.11 architecture and the existing wired LANs. It is possible that a device is designated as 

both an AP and a portal.  

 

Figure 2.5 -  Connecting to other IEEE 802 LANs 
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2 .2 .4 Logical  Service Interfaces  

 

IEEE 802.11 doesn’t explicitly specify the details of DS implementation. Instead, it 

specifies the services in two categories: the station service (SS) and the distribution system 

service (DSS). Both categories are utilized by the MAC sub-layer. 

 

Services provided by stations (SS) are:  

a. Authentication 

b. Deauthentication 

c. Privacy 

d. MSDU delivery 

e. DFS 

f. TPC6 

g. Higher layer timer synchronization (QoS facility only) 

h. QoS traffic scheduling (QoS facility only) 

 

The following are Distribution System Services (DSS): 

a. Association 

b. Disassociation 

c. Distribution 

d. Integration 

e. Reassociation 

f. QoS traffic scheduling (QoS facility only) 

 

                                                                    
6 Transmit Power  Control 



  

Carmen J. Martin Martin – SAPIENZA Università di Roma 

29 

 

Figure 2.6 - Complete IEEE 802.11 architecture. 

 

As Figure 2.6 illustrates, DSS are represented by arrows towards the APs, labeling 

these services as used to cross media and address space logical boundaries; while SS are 

represented by arrows towards stations (STAs). 

 

 2 .3  Frame Structure 

 

A MAC frame structure is composed by a MAC Header, a variable length frame 

body and a frame check sequence (FCS). Figure 2.7 displays a frame’s general structure: 

 

Figure 2.7 - Frame format 

 There is sufficient information on the MAC header to manage fragmentation, 

transmission, encryption and data being transported on the packet. The length of the header, 

as well as the data, is variable and depends on the type of frame that is being transmitted. For 
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this reason, the fields Address 2, 3 and 4, and Sequence Control may or may not be present. 

A 32-bit Cyclic Redundancy Code (CRC) is stored in the FCS to verify the frame’s integrity.

  

Here’s a detailed explanation of each field that integrates the MAC Frame:  

 

2 .3 .1  Frame Control  

This field is composed of two bytes integrating the fields Protocol Version, Type, 

Subtype, To DS, From DS, More Fragments, Retry, Power Management, More Data, 

Protected Frame and Order. Figure 2.8 illustrates Frame Control structure. 

 

 

Figure 2.8 - Frame Control field 

 

 

The Protocol Version field, 2 bits in length, specifies the frame’s version of 802.11 

MAC. Up until now, there is only one version and therefore the field value is 0; in the future, 

we might find further versions and different values. 

 

Type and Sub Type fields identify the type of frame that is being used. Values on this 

field depend on the type of data being transmitted. Three types of frame are available: 

 Control 

 Management 

 Data 
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Each type contains subtypes. In the data frame ,the most relevant bit on the subtype 

field, indicates is QoS functionalities are supported. This bit has come to be known as the 

QoS subfield.  

Frame types with their subtypes are displayed on tables 2.1 and 2.2.  

 

Table 2.1 - Frames Types and Subtypes (1) 
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Table 2.2 - Frames Type and Subtypes (2) 

 

The Fields To DS and From DS indicates whether the packet is addressed to the 

DS or not. The values on these fields also help determine which addresses must be situated 

in the fields Address 1, 2, 3 and 4. Table 2.3 offers an interpretation of DS field’s value.  
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Table 2.3 To DS and From DS subfields 

 

The field More Fragments was designed to manage frame fragmentation. Field’s 

value equals 1 when subsequent fragments of a data or management frame are expected. 

Otherwise, More Fragments will equal 0.  

The Retry field helps the destination device to avoid processing duplicated frames. 

When Retry equals 1, the frame is a retransmission.  

Since the 802.11 standard is oriented to mobile devices such as laptops and PDAs, 

the Power Management  field provides support for the energy consumption of these devices. 

When Power Management equals 1 the transmitting device can turn to power save mode; 

when the value is 0, the station is in active mode. In Access Points this value is always 0, 

since these devise don’t possess energy support capabilities. However, Access Points have 

the ability to store packets destined to “sleeping” devices. 

The More Data field informs “sleeping” devices that they have packets awaiting 

reception (More Data=1); to retrieve these, devices must send PS-Poll packets to their APs. 

The Protected Frame field manages confidentiality and data authentication; when 

its value is 1, it indicates that encryption has been applied to the packet and the structure is 

slightly changed. The fixed value of PF is 1 for Data Frames as well as Authentication 

subtype.  

The security of a wireless LAN is very important, especially for applications hosting 



  

Carmen J. Martin Martin – SAPIENZA Università di Roma 

34 

valuable information. For example, networks transmitting credit card numbers for 

verification or storing sensitive information are definitely candidates for emphasizing 

security. In these cases and others, proactively safeguard your network against security 

attacks. 

This standard defines two classes of security algorithms for IEEE 802.11 networks 

[3]: 

— Algorithms for creating and using an RSNA 7, called RSNA 

algorithms  

— Pre-RSNA algorithms 

Pre-RSNA algorithms includes the WEP-40. This  was defined as a means of 

protecting (using a 40-bit key) the confidentiality of data exchanged among authorized users 

of a WLAN from casual eavesdropping. The figure 2.9  depicts the basic WEP encryptions : 

RC4 keystream XORed with plaintext Standard 64-bit WEP uses a 40 bit key (also known 

as WEP-40), which is concatenated with a 24-bit initialization vector (IV) to form the RC4 

traffic key. 

 

Figure 2.9 - WEP procedure 

Sometimes packet order is relevant to the transmission and processing costs, the 

Order field takes care of this function. When its value equals one, strict packet delivery order 

must be followed.   

2 .3 .2  Duration/ID 

This 16 bit field can be used one of three ways. Table 2.4 illustrates the possibilities. 

                                                                    
7 Robust Security Network Association 
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Table 2.4 - Duration/ID field 

 To control medium access, wireless devices need to monitor packet headers and 

update the NAV (Network Allocation Network). Therefore, when bit 15 in the Duration/ID 

field equals 0, the value in this field indicates the time (in microseconds) in which the NAV 

must be updated. For packets transmitted during Contention Free Periods (CFP) the 

default actualization time is 32,768 microseconds. 

For PS-Poll packets, the Duration/ID field has another interpretation, since this 

packet type is used by mobile devices to retrieve their AP stored packets; AID (Association 

ID) indicating the BSS to which the device belongs is obtained from the Duration/ID field.

  

2 .3 .3  Address  

There can be up to 4 Address fields in a MAC Header; each one may serve a 

different purpose depending on the frame type. Addresses are composed of 48 bits, 

according to IEEE 802 standard and were designed to identify a device, group of devices or 

all devices that make up a network. Addresses can be utilized for distinct finalities, as 

detailed here: 

 DA (Destination Address). An IEEE MAC identifier of 48 

bits that denotes the MAC entity or entities that denotes the final 

destination, which will manage the MSDU for protocol processing on the 

higher layers.  

  SA (Source Address). An IEEE MAC of 48 bits identifies 

the MAC entity from which the transfer of the MSDU contained in the 
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frame body field was initiated. 

 RA (Receiver Address) Single our group 48 bit address that 

indicates the intended immediate recipient STAs, on the WM, for the 

information contained in the frame body field.  

 TA (Transmitter Address). A 48 bits IEEE MAC address 

identifying the station that has transmitted de 48 bits, onto the WM, the 

MPDU contained in the frame body field. In order words, the wireless 

device that transmitted the packet over the wireless medium.  

 BSSID (Basic Service Set ID). MAC address that 

enunciates the Wireless LAN to which the device has been assigned. In ad-

hoc networks, a random BSSID is generated –according to regulations on 

IEEE 802- to avoid conflicts with legal MAC addresses. For networks with 

infrastructure, the BSSID is the MAC address of the Access Point.  

Since Address fields use depends on frame type and subtype, most frames utilize 

three fields for DA, SA and BSSID. However in Data packets, field use depends on the 

existing network.  

2 .3 .4 Sequence Control  

Sequence Control is a 16 bits field, used in the process of defragmentation that helps 

eliminate packet duplication, utilizing Fragment Number and Sequence Number subfields 

(illustrated in Figure 2.9).   

Figure 2.10 - Sequence Control field 

 

The subfield Fragment Number allows to control packet re-assembly, by creating a 

numerical identifier (4 bits) that acquires value 0 for the first fragment and increases in a +1 

for each successive fragment. This identifier remains constant in every re-transmission of 

fragments. 
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In the management of higher level packets on the MAC sublayer, each packet is 

assigned a sequential number. This value is stored in the Sequence Number subfield (12 

bits). Value assignation happens through a module 4096 counter, where the first packet is 

assigned Sequence Number value 0 and subsequent packets increase +1 in value. This value 

remains unaltered in re-transmissions, as do the fragments. 

2 .3 .5  QoS (Quality  of  Service)  Control  Field 

This is 16 bits field that identifies the TC or TS to which the frame belongs to, it also 

displays information relative to the QoS. The field is present in data frames with a fixed value 

of 1 (as detailed on section 3.2.1). Each QoS Control Field is composed by 5 sub-parts that 

depend on the designated sender (HC or no –AP STA) and on the frame type and subtype. 

Table 2.5 displays this information. 

 

Table 2.5 - QoS Control field 

2.3 .6  Frame Body 

A variable length frame, it contents specific information to individual frame types 

and subtypes. Maximum capacity is determined by maximum length (MSDU+ICV+IV), 

where ICV (Integrity Check Value) y el IV (Initialization Vector) are subfields 

corresponding to the WEP service (Section 2.3.1). 

2 .3 .7  FCS 

This field contains 32 bits CRC (Cyclic Redundancy Code) that verifies frame 

integrity. The MAC Header and the Frame Body are used to calculate the CRC; these two 

fields are commonly referred to as calculation fields. 
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 The FCS is calculated using the following standard generator polynomial of degree 

32: 

G(x)=  x 32 + x   26+ x 23  + x 16  + x   12 +x 11 +x 10 +x 8  +x 7  +x 5  +x 4  +x 2 +x 1  +1                 ( 1.1) 

 The FCS is the ones complement of the sum (module 2) of the following: 

 

a)   The remainder of xk ×(x  31+x 30+x 29+...+x2+x+1) divided (module2) by G(x), 

where k is the number of bits in the calculation fields, and 

b)  The remainder after multiplication of the contents (treated as a polynomial) of the 

calculation fields by x32 and then division by G(x). 

The FCS field is transmitted commencing with the coefficient of the highest-order 

term. 

According to the IEEE 802.11 Standard, with the FCS value of a transmitted 

packet, receiving devices can verify if the packet was altered during transmission by 

comparing it to the calculated CRC. If the CRC correspond to the packet, an affirmative 

acknowledgement packet in sent to the transmitting device. If the CRC does not match the 

packet, waiting time will end and the transmitter will need to retransmit. In 802.11 there are 

no negative acknowledgements.  

2.3.8 Format for  individuals  frame types 

In prior sections fields that define frame format have been explained; however the 

presence or absence of these fields and their specifications depend on frame type and 

subtype.  

2.3.8.1  Control frames 

The subfields composing Frame Control correspond to those displayed on Figure 

2.8; the remainder of the structure depends on the specific sub-frame type being used. Here 

are some examples of frame subtypes with their structures.  (Please refer to the Standard for 

more detailed information). 

2.3.8.1.1  RTS (Request to Send) 

Request to Send is represent by a MAC Header, containing the subfields Frame 

Control, Duration, RA and TA, as well as the FCS field. There is no frame body in this case. 
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Figure 2.11 - RTS frame structure 

 

Duration field will depend on the presence or absence of QoS capability on the 

station as well as method for medium access. The RA field of the RTS frame is the address 

of the STA, on the WM, that is the intended immediate recipient of the pending directed 

data or management frame. 

The TA field is the address of the STA transmitting the RTS frame. 

2.3.8.1.2  CTS (Clear to Send) 

   Clear to Send structure is also free of Frame Body.  

                          

 

Figure 2.12 - CTS frame structure. 

 

When the CTS frame follows an RTS frame, the RA field of the CTS frame is 

copied from the TA field of the immediately previous RTS frame to which the CTS is a 

response. When the CTS is the first frame in a frame exchange, the RA field is set to the 

MAC address of the transmitter. 

For all CTS frames sent in response to RTS frames, the duration value is the value 

obtained from the Duration field of the immediately previous RTS frame, minus the time, in 
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microseconds, required to transmit the CTS frame and its SIFS interval. If the calculated 

duration includes a fractional microsecond, that value is rounded up to the next higher 

integer. 

Specifications for the Duration field are detailed in extent on the Standard.  

2.3.8.1.3 ACK (Acknowledgment) 

A very similar structure to its predecessors, the difference is that RA field is copied 

from the Address 2 field of the immediately previous directed data, management, 

BlockAckReq control, BlockAck control, or PS-Poll control frame. 

             

Figure 2.13 -  ACK frame structure 

2.3.8.1.4 PS-Poll 

In this case, in correspondence with the Duration field, we find the AID 

(Association Identifier), defined as the value assigned to the STA transmitting the frame by 

the AP in the association response frame that established that STA’s current association. 

The BSSID is the address of the STA contained in the AP. The TA field is the 

address of the STA transmitting the frame.  

 

Figure 2.14 - PS-Poll frame structure 
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2.3.8.1.5  CF-End 

For the Contention Free-End format, Duration field is fixed to 0, while the RA field 

is the broadcast group address and the BSSID field is the address of the STA contained in 

the AP.  

 

 

Figure 2.15  -  CF-End frame structure 

2.3.8.2  Data Frames 

Data frames are illustrated in figure 2.7. The fields Address 1, 2, 3 and 4 depend on 

the values To DS and From DS. These relationships are reported on Table 2.5: 

 

Table 2.6 -  Valid values for addresses field 

The frame body consists of the MSDU, or a fragment thereof, and a security header 

and trailer (if and only if the Protected Frame subfield in the Frame Control field is set to 1). 

The frame body is null (0 octets in length) in data frames of subtype Null (no data), CF-ACK 

(no data), CF-Poll (no data), and CF-Ack+CF-Poll (no data), regardless of the encoding of 

the QoS subfield in the Frame Control field. 

For data frames of subtype Null (no data), CF-ACK (no data), CF-Poll (no data), 

and CF-Ack+CF-Poll (no data) and for the corresponding QoS data frame subtypes, the 
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Frame Body field is omitted; these subtypes are used for MAC control purposes. For data 

frames of subtypes Data, Data+CF-Ack, Data+CF-Poll, and Data+CF-Ack+CF+Poll and 

for the corresponding four QoS data frame subtypes, the Frame Body field contains all of, or 

a fragment of, an MSDU after any encapsulation for security. 

Calculations for the duration field depend on factors such as utilized access method, 

specifications for the calculation are provided in the standard.  

2.3.8.3  Management Frames 

Management Frames are structured as follows, with independence of subtypes: 

 

Figure 2.16 -  Management frame structure 

 Figure 2.16 displays how Address 1 corresponds to the Destination Address (in 

this case, the STAuses the contents of this field   to perform the address matching for receive 

decisions). Address 2 refers to the Source Address (SA) indicating the address of the STA 

transmitting the frame. 

On the other hand, the BSSID of the management frame is determined as follows: 

a) If the STA is an AP or is associated with an AP, the BSSID is the address 

currently in use by the STA contained in the AP. 

b) If the STA is a member of an IBSS, the BSSID is the BSSID of the IBSS. 

 The address fields for management frames do not vary by frame subtype. 

Regarding the Duration field, values will depend on the method of access and the 

presence or absence of QoS capability. 

Frame body field will be specific to the frame subtype employed. The table displays 

all Control Frame subtypes. We will explain in detail some Control Frames of interest to this 

project.  
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2.3.8.3.1  Beacon Frame 

This frame type is relevant to us because it contains all the information about the 

network. Beacon frames are transmitted periodically to announce the presence of a Wireless 

LAN network. Beacon frames are transmitted by the Access Point (AP) in an infrastructure 

BSS. In IBSS network beacon generation is distributed among the stations. 

Tables 2.7. and 2.78 display all the components of Frame Body, such as Beacon 

Interval, Timestamp (both vital for timing and synchronization) and others like Supported 

rates, Frequency Hopping Parameters, Direct Sequence Parameter (that reveal 

characteristics of the PHY layer).  

 

 

Table 2.7 -  Beacon frame body (1) 
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Table 2.8 -  Beacon frame body (2) 

 

2.3.8.3.2  Association Request 

Through this type of message the STA requires association to an AP. This message 

contains in its frame body a series of compartments used to indicate requested or advertised 

capabilities. 



  

Carmen J. Martin Martin – SAPIENZA Università di Roma 

45 

 

Table 2.9 - Association Request frame body 

 

2.3.8.3.3    Association Response 

Once the Request is placed, the AP replies with an Association Response message 

stating whether the request was accepted.  If it was, it sends as a message field the AID 

(Association Identifier), a 16 bits compartment that represents the STA identification. The 

following tables illustrate the full Frame Body of the Association Response frame. 

 

Table 2.10 - Association Response frame body 

(1)



  

Carmen J. Martin Martin – SAPIENZA Università di Roma 

46 

 

Table 2.11 -  Association Response frame body (2) 

 

2.3.8.3.4  Probe Request 

A station sends a probe request frame when it needs to obtain information from 

another station.  

 

Table 2.12 -  Probe Request frame body 

 

2.3.8.3.5  Probe Response 

A station will respond with a probe response frame, containing capability 

information, supported data rates, etc., when after it receives a probe request frame.  
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Table 2.13 -  Probe Response frame body 
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2 .4 MAC Sublayer Functional Description 

 

Figure 2.17 shows the architecture of the MAC sublayer, including the distributed 

coordination function (DCF), the point coordination function (PCF), the hybrid 

coordination function (HCF) and their coexistence in an IEEE 802.11 LAN.  

 

Figure 2.17 - MAC architecture 

 

2 .4.1  MAC Architecture 

The basic 802.11 MAC layer uses the Distributed Coordination Function (DCF) to 

share the medium between multiple stations. DCF relies on CSMA/CA (Carrier Sense 

Multiple Access with Collision Avoidance) and optional 802.11 RTS/CTS to share the 

medium between stations. The STA that wants to transmit needs to sense the medium to 

determine is another station is transmitting, if the medium is available transmission can be 

initiated. If the medium is busy, transmission is delayed until the ongoing is finished. After 

wait time, the STA must select a random backoff interval and shall decrement the backoff 

interval counter while the medium is idle. Refinement of the method can minimize future 
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collisions, through an interchange of exchange short control frames (Request to Send-Clear 

to Send). 

The original 802.11 MAC defines another coordination function called the Point 

Coordination Function (PCF): this is available only in "infrastructure" mode, where stations 

are connected to the network through an Access Point (AP). This is a polling operation, 

where Point Coordination (PC), operating as AP of the BSS exerts control as Poll master. 

PCF distributes information internally to the Beacon frames to control the medium and fix 

the Network Allocation Vectors (NAV) of the stations. Additionally, all frames transmitted 

during PCF can use smaller Inter Frame Spaces (IFS) than they will through the DFC, 

gaining priority in medium access.  

Access priority provided by a PCF reflects the creation of a Contention Free (CF) 

access method. Where the PC both controls frame transmission and eliminates contention 

for a limited period of time. 

DCF and PCF shall coexist in way in which can operate contemporaneously on the 

same BSS.  

 

Figure 2.18 -  Coexistence Contention Free and Contention  Period 

When an HC is operating in a BSS, it may generate an alternation of CFP and CP 

in the same way as a PC, using the DCF access method only during the CP. The HCF 

access methods (controlled and contention-based) operate sequentially when the channel is 

in CP. 

The IEEE 802.11, 2007 Edition enhances the DCF and the PCF, through a new 

coordination function: the Hybrid Coordination Function (HCF). This additional 

coordination function is supported only on QoS network configuration must be 

implemented in each QoS station. The HCF combines DCF and PCF functions with some 

improvements, QoS specific mechanism and a series of sub frames that allow uniform 
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interchange of sequences for transmission of QoS data during either CF or CFP.  

Within the HCF, there are two methods of channel access, similar to those defined 

in the legacy 802.11 MAC: HCF Controlled Channel Access (HCCA) and Enhanced 

Distributed Channel Access (EDCA). Both EDCA and HCCA define Traffic Categories 

(TC). For example, emails could be assigned to a low priority class, and Voice over Wireless 

LAN (VoWLAN) could be assigned to a high priority class. 

With EDCA (Enhanced Distributed Channel Access), high priority traffic has a 

higher chance of being sent than low priority traffic: a station with high priority traffic waits a 

little less before it sends its packet, on average, than a station with low priority traffic. In 

addition, each priority level is assigned a Transmit Opportunity (TXOP). A TXOP is a 

bounded time interval during which a station can send as many frames as possible (as long as 

the duration of the transmissions does not extend beyond the maximum duration of the 

TXOP). If a frame is too large to be transmitted in a single TXOP, it should be fragmented 

into smaller frames. The use of TXOPs reduces the problem of low rate stations gaining an 

inordinate amount of channel time in the legacy 802.11 DCF MAC. A TXOP time interval of 

0 means it is limited to a single MSDU or MMPDU. 

According to the IEEE  802.11 Standard, the purpose of QoS is to protect high 

priority data from low priority data but there can be scenarios in which the data which 

belongs to same priority needs to be protected from data of same priority. Example being 

suppose a network can accommodate only 10 data calls & an eleventh call is made. 

Admission Control in EDCA addresses this type of problems. The AP publishes the 

available bandwidth in beacons. The clients can check the available bandwidth before 

adding more traffic in the network that cannot be entertained. 

Wi-Fi Multimedia (WMM) certified APs must be enabled for EDCA and TXOP. 

All other enhancements of the 802.11e amendment are optional. 

Instead, the HCCA (HCF (Hybrid Coordination Function) Controlled Channel 

Access) works a lot like the Point Coordination Function. However, in contrast to PCF, in 

which the interval between two beacon frames is divided into two periods of CFP and CP, 

the HCCA allows for CFPs being initiated at almost any time during a CP. This kind of 

CFP is called a Controlled Access Phase (CAP) in 802.11e. A CAP is initiated by the AP, 

whenever it wants to send a frame to a station, or receive a frame from a station, in a 



  

Carmen J. Martin Martin – SAPIENZA Università di Roma 

51 

contention free manner. In fact, the CFP is a CAP too. During a CAP, the Hybrid 

Coordinator (HC) -- which is also the AP -- controls the access to the medium. During the 

CP, all stations function in EDCA. The other difference with the PCF is that Traffic Class 

(TC) and Traffic Streams (TS) are defined. This means that the HC is not limited to per-

station queuing and can provide a kind of per-session service. Also, the HC can coordinate 

these streams or sessions in any fashion it chooses (not just round-robin). Moreover, the 

stations give info about the lengths of their queues for each Traffic Class (TC). The HC can 

use this info to give priority to one station over another, or better adjust its scheduling 

mechanism. Another difference is that stations are given a TXOP: they may send multiple 

packets in a row, for a given time period selected by the HC. During the CP, the HC allows 

stations to send data by sending CF-Poll frames. 

HCCA is generally considered the most advanced (and complex) coordination 

function. With the HCCA, QoS can be configured with great precision. QoS-enabled 

stations have the ability to request specific transmission parameters (data rate, jitter, etc.) 

which should allow advanced applications like VoIP and video streaming to work more 

effectively on a Wi-Fi network. HCCA support is not mandatory. In fact, few (if any) APs 

currently available are enabled for HCCA. Nevertheless, implementing the HCCA does not 

require much overhead, as it basically uses the existing DCF mechanism for channel access 

(no change to DCF or EDCA operation is needed). In particular, the station side 

implementation is very simple as stations only need to be able to respond to poll messages. 

On the AP side, however, a scheduler and queuing mechanism is needed. Given that AP's 

are already equipped better than station transceivers, this should not be a problem either. 

2 .4.2  DCF 

As previously explained, DCF is the fundamental MAC technique of the IEEE 

802.11 based WLAN standard. DCF employs a CSMA/CA with Binary exponential backoff 

algorithm. Also, all directed traffic uses immediate positive acknowledgment (ACK frame) in 

those cases when retransmission is scheduled by the sender if no ACK is received. 

The Carrier Sense Multiple Access (CSMA) is a probabilistic Media Access 

Control (MAC) protocol in which a STA verifies the absence of other traffic before 

transmitting on a shared transmission medium, such as an electrical bus, or a band of the 

electromagnetic spectrum. 
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"Carrier Sense" describes the fact that a transmitter listens for a carrier wave before 

trying to send. That is, it tries to detect the presence of an encoded signal from another 

station before attempting to transmit. If a carrier is sensed, the station waits for the 

transmission in progress to finish before initiating its own transmission. 

The CA functionality CA (Collision Avoidance) is modification of pure Carrier 

Sense Multiple Access and decreases probability of collisions wherever those are most likely 

to occur, specifically when the medium goes from busy to ideal state. This is the kind of 

situation that needs a random backoff procedure to troubleshoot.  

Carrier sense shall be performed through physical and virtual mechanisms. Virtual is 

achieved through distribution of reservation information that indicates medium use. The 

Request to Send (RTS) - Clear to Send (CTS) interchange, prior to data frame transmission 

is the most common method to distribute this information to the medium. The RTS and 

CTS frames contain a Duration field that defines the period of time that the medium is to be 

reserved to transmit the actual data frame and the returning ACK frame. All STAs within 

the reception range of either the originating STA (which transmits the RTS) or the 

destination STA (which transmits the CTS) shall learn of the medium reservation. Thus, a 

STA can be unable to receive from the originating STA and yet still know about the 

impending use of the medium to transmit a data frame. 

The RTS/CTS mechanism cannot be used for MPDUs with broadcast and 

multicast immediate destination because there are multiple recipients for the RTS, and thus 

potentially multiple concurrent senders of the CTS in response. The RTS/CTS mechanism 

need not be used for every data frame transmission. Because the additional RTS and CTS 

frames add overhead inefficiency, the mechanism is not always justified, especially for short 

data frames. 

A STA configured not to initiate the RTS/CTS mechanism shall still update its 

virtual CS mechanism with the duration information contained in a received RTS or CTS 

frame, and shall always respond to an RTS addressed to it with CTS if permitted by 

medium access rules. 

To support the proper operation of the RTS/CTS and the virtual CS mechanism, 

all STAs shall be able to detect the RTS and CTS frames. 

Virtual carrier sensing must be under control of the MAC sublayer, and related 
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closely to the network allocation vector (NAV). The NAV maintains a prediction of future 

traffic on the medium based on duration information that is announced in RTS/CTS frames 

prior to the actual exchange of data. 

 

Figure 2.19 -  RTS-CTS procedure 

STAs receiving a valid frame shall update their NAV with the information received 

in the Duration field for all frames where the new NAV value is greater than the current 

NAV value, except the NAV shall not be updated where the RA is equal to the receiving 

STA’s MAC address. Upon receipt of a PS-Poll frame, a STA shall update its NAV settings 

as appropriate under the data rate selection rules using a duration value equal to the time, in 

microseconds, required to transmit one ACK frame plus one SIFS interval, but only when 

the new NAV value is greater than the current NAV value. If the calculated duration 

includes a fractional microsecond, that value is rounded up the next higher integer.  

Figure 2.19 shows the NAVs in two stations, the longest bar corresponds to the 

station that received the RTS frame and the shorter to the recipient of the CTS, length of 

these vectors depends on the values on the Duration field.  

2.4.2.1 Inter Frame Space (IFS) 

To provide access priority levels to the medium, five types of Inter Frame Spaces are 

defined: 

  SIFS (Short InterFrame Space) 

As shown on figure 2.20 , this is the shortest of the IFSs. It’s used to provide 
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an efficient MSDU delivery mechanism. The SIFS shall be used prior to 

transmission of an ACK frame, a CTS frame, the second or subsequent MPDU of a 

fragment burst, and by a STA responding to any polling by the PCF.  The SIFS 

may also be used by a PC for any types of frames during the CFP .The SIFS is the 

time from the end of the last symbol of the previous frame to the beginning of the 

first symbol of the preamble of the subsequent frame as seen at the air interface. 

SIFS shall be used when STAs have seized the medium and need to keep it for the 

duration of the frame exchange sequence to be performed. Using the smallest gap 

between transmissions within the frame exchange sequence prevents other STAs, 

which are required to wait for the medium to be idle for a longer gap, from 

attempting to use the medium, thus giving priority to completion of the frame 

exchange sequence in progress. 

Once the STA has contended for the channel, that STA shall continue to 

send fragments until either all fragments of a single MSDU or MMPDU have been 

sent, an acknowledgment is not received, or the STA is restricted from sending any 

additional fragments due to a dwell time boundary.  

 PIFS (Point InterFrame Space) 

The PIFS shall be used only by STAs operating under the PCF to gain 

priority access to the medium at the start of the CFP or by a STA to transmit a 

Channel Switch Announcement frame. A STA using the PCF shall be allowed to 

transmit CF traffic after its CS mechanism determines that the medium is idle at the 

TxPIFS slot boundary.  

 DIFS (DCF Interframe Space) 

The DIFS shall be used by STAs operating under the DCF to transmit 

data frames (MPDUs) and management frames (MMPDUs). A STA using the 

DCF shall be allowed to transmit if its CS mechanism determines that the medium 

is idle at the TxDIFS slot boundary after a correctly received frame, and its backoff 

time has expired.  

 AIFS (Arbitration Interframe Space) 

The AIFS shall be used by QoS STAs to transmit all data frames 

(MPDUs), all management frames (MMPDUs), and the following control frames: 

PS-Poll, RTS, CTS (when not transmitted as a response to the RTS), 

BlockAckReq, and BlockAck (when not transmitted as a response to the 
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BlockAckReq).  

 EIFS (Extended Interframe Space) 

A STA’s DCF shall use EIFS before transmission, when it determines that 

the medium is idle following reception of a frame for which the PHY-

RXEND.indication primitive contained an error or a frame for which the MAC 

FCS value was not correct. The EIFS is defined to provide enough time for another 

STA to acknowledge what was, to this STA, an incorrectly received frame before 

this STA commences transmission.  

The different IFSs shall be independent of the STA bit rate. The IFS timings are 

defined as time gaps on the medium, and the IFS timings except AIFS are fixed for each 

PHY (even in multirate-capable PHYs). The IFS values are determined from attributes 

specified by the PHY. 

 

Figure 2.20 -  IFS relationships 

2.4.2.2 Backoff procedure 

Whenever an STA needs to initiate a MPDU or MMPUD transmission it needs to 

activate the carrier sense mechanism to determine the busy/idle state of the medium. If the 

medium is busy, the STA shall defer until the medium is determined to be idle without 

interruption for a period of time equal to DIFS when the last frame detected on the medium 

was received correctly, or after the medium is determined to be idle without interruption for 

a period of time equal to EIFS when the last frame detected on the medium was not received 

correctly. After this DIFS or EIFS medium idle time, the STA shall then generate a random 

backoff period for an additional deferral time before transmitting, unless the backoff timer 

already contains a nonzero value, in which case the selection of a random number is not 
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needed and not performed. This process minimizes collisions during contention between 

multiple STAs that have been deferring to the same event. Waiting time is determined 

through this equation: 

                         Backoff Time = Random() × aSlotTime              (1.2) 

where: 

Random() =  Pseudo-random integer drawn from a uniform distribution over 

the interval [0,CW]. 

 aSlotTime = The value of the correspondingly named PHY characteristic. 

 The contention window (CW) parameter shall take an initial value of aCWmin. 

Every STA shall maintain a STA short retry count (SSRC) as well as a STA long retry 

count (SLRC), both of which shall take an initial value of zero. The SSRC shall be 

incremented when any short retry count (SRC) associated with any MPDU of type Data is 

incremented. The SLRC shall be incremented when any long retry count (LRC) associated 

with any MPDU of type Data is incremented. The CW shall take the next value in the series 

every time an unsuccessful attempt to transmit an MPDU causes either STA retry counter 

to increment, until the CW reaches the value of aCWmax. A retry is defined as the entire 

sequence of frames sent, separated by SIFS intervals, in an attempt to deliver an MPDU. 

Once it reaches aCWmax, the CW shall remain at the value of aCWmax until the CW is 

reset. This improves the stability of the access protocol under high-load conditions. 

2.4.2.3 Basic Access 

The following is an illustration of the process through which an STA determines if it 

is able to transmit through the wireless medium. 

 

Figure 2.21 - Basic Access method 
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As displayed on figure 2.21, a STA may transmit a pending MPDU when it is 

operating under the DCF access method, either in the absence of a PC, or in the CP of the 

PCF access method, when the STA determines that the medium is idle for greater than or 

equal to a DIFS period, or an EIFS period if the immediately preceding medium-busy event 

was caused by detection of a frame that was not received at this STA with a correct MAC 

FCS value. If, under these conditions, the medium is determined by the CS mechanism to be 

busy when a STA desires to initiate the initial frame of one of the frame exchanges, exclusive 

of the CF period, the random backoff procedure shall be followed.  

To kick start the backoff procedure, the STA shall set its Backoff Timer to a random 

backoff time using the equation shown on section 2.3.2.2. How displays the  figure 2.22, all 

backoff slots occur following a DIFS period during which the medium is determined to be 

idle for the duration of the DIFS period, or following an EIFS period during which the 

medium is determined to be idle for the duration of the EIFS period, as appropriate. 

 

A STA performing the backoff procedure shall use the CS mechanism to determine 

whether there is activity during each backoff slot. If no medium activity is indicated for the 

duration of a particular backoff slot, then the backoff procedure shall decrement its backoff 

time by aSlotTime. 

If the medium is determined to be busy at any time during a backoff slot, then the 

backoff procedure is suspended; that is, the backoff timer shall not decrement for that slot. 

Transmission shall commence when the Backoff Timer reaches zero. 

In the case of unsuccessful transmissions requiring acknowledgment, this backoff 

procedure shall begin at the end of the ACKTimeout interval.  

The effect of this procedure is that when multiple STAs are deferring and go into 

random backoff, then the STA selecting the smallest backoff time using the random function 

will win the contention (assuming all of the contending STAs detect the same instances of 

WM activity at their respective receivers). 
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Figure 2.22 -  Backoff procedure 

 

A STA that is addressed by an RTS frame shall transmit a CTS frame after a SIFS 

period if the NAV at the STA receiving the RTS frame indicates that the medium is idle. If 

the NAV at the STA receiving the RTS indicates the medium is not idle, that STA shall not 

respond to the RTS frame. The Duration field in the CTS frame shall be the duration field 

from the received RTS frame, adjusted by subtraction of aSIFSTime and the number of 

microseconds required to transmit the CTS frame at a data rate determined. 

Upon successful reception of a frame of a type that requires acknowledgment with 

the To DS field set, an AP shall generate an ACK frame. After a successful reception of a 

frame requiring acknowledgment, transmission of the ACK frame shall commence after a 

SIFS period, without regard to the busy/idle state of the medium. 

The basic access mechanism is illustrated at figure 2.23: 

Figure 2.23 -  ACK procedure 
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2.4.3  PCF 

Each CFP shall begin with a Beacon frame that contains a DTIM element 

(Table2.8). The CFPs shall occur at a defined repetition rate, which shall be synchronized 

with the beacon interval. 

The PC generates CFPs at the CFP repetition interval (CFPPeriod), which is 

defined as a number of DTIM intervals. The PC shall determine the CFPPeriod (depicted 

as a repetition interval in the illustrations in Figure 2.24) to use from the CFPPeriod 

parameter in the CF Parameter Set. This value, in units of DTIM intervals, shall be 

communicated to other STAs in the BSS in the CFPPeriod field of the CF Parameter Set 

element of Beacon frames. The CF Parameter Set element shall only be present in Beacon 

and Probe Response frames transmitted by STAs containing an active PC. 

 

Figure 2.24 - Timing relationships 

 

If the CFP duration is greater than the beacon interval, the PC shall transmit 

Beacon frames at the appropriate times during the CFP (subject to delay due to traffic at the 

nominal times, as with all Beacon frames). The CF Parameter Set element in all Beacon 

frames at the start of, or within, a CFP shall contain a non - zero value in the 

CFPDurRemaining field.  

The PC may terminate any CFP at or before the aCFPMaxDuration, based on 

available traffic and size of the polling list. Because the transmission of any Beacon frame 

may be delayed due to a medium busy condition at the TBTT, a CFP may be foreshortened 

by the amount of the delay. In the case of a busy medium due to DCF traffic, the Beacon 

frame shall be delayed for the time required to complete the current DCF frame exchange.  

At the nominal beginning of each CFP, the PC shall sense the medium. When the 
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medium is determined to be idle for one PIFS period, the PC shall transmit a Beacon frame 

containing the CF Parameter Set element and a DTIM element. 

 Figure 2.25 - PCF frame transfer 

 

As illustrated on Figure 2.25, after the initial Beacon frame, the PC shall wait for one 

SIFS period, and then transmit one of the following: a data frame, a CF-Poll frame, a 

Data+CF-Poll frame, a management frame, or a CF-End frame. If the CFP is null, i.e., no 

traffic is buffered and no polls exist to send at the PC, a CF-End frame shall be transmitted 

immediately after the initial Beacon frame. If there are buffered multicast or broadcast 

frames, the PC shall transmit these prior to any unicast frames. 

The PC shall transmit a CF-End or CF-End +ACK frame at the end of each CFP. 

STAs receiving individually addressed, error-free frames from the PC are expected 

to respond after a SIFS period. If the recipient STA is not CF-Pollable, the response to 

receipt of an error-free data frame shall always be an ACK frame. 

Each STA, except the STA with the PC, shall preset its NAV to the 

CFPMaxDuration value (obtained from the CF Parameter Set element in Beacon frames 

from this PC). This setting of the NAV also reduces the risk of hidden STAs determining 

the medium to be idle for a DIFS period during the CFP and possibly corrupting a 

transmission in progress. 

Non-CF-Pollable STAs shall acknowledge receipt of data and management frames 

using ACK Control frames sent after a SIFS period. This non-CF- Pollable operation is the 

same as that already employed by such STAs for DCF operation. 
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When polled by the PCF (Data+CF-Poll, Data+CF-ACK+CF-Poll, CF-Poll, or 

CF-ACK+CF-Poll) a CF-Pollable STA may send one data frame to any destination. Such a 

frame directed to or through the PC STA shall be acknowledged by the PC, using the CF-

ACK indication (Data+CF-ACK, Data+CF-ACK+CF-Poll, 

If the PC supports use of the CFP for inbound frame transfer as well as for frame 

delivery, the PC shall maintain a “polling list” for use in selecting STAs that are eligible to 

receive CF-Polls during CFPs. If the PC supports the use of the CFP solely for frame 

delivery, the PC does not require a polling list, and shall never generate data frames with a 

subtype that includes CF-Poll. The form of CF support provided by the PC is identified in 

the Capability Information field of Beacon, Association Response, Reassociation Response, 

and Probe Response management frames, which are sent from APs. Any such frames sent by 

STAs, as in noninfrastructure networks, shall always have these bits set to 0. 

The polling list is used to force the polling of CF-Pollable STAs, whether or not the 

PC has pending traffic to transmit to those STAs. The polling list may be used to control the 

use of Data+CF-Poll and Data+CF- ACK+CF-Poll types for transmission of data frames 

being sent to CF-Pollable STAs by the PC. The polling list is a logical construct, which is 

not exposed outside of the PC. A minimum set of polling list maintenance techniques are 

required to ensure interoperability of arbitrary CF-Pollable STAs in BSSs controlled by 

arbitrary APs with active PCs. APs may also implement additional polling list maintenance 

techniques that are outside the scope of this standard. 

While time remains in the CFP, all CF frames have been delivered, and all STAs on 

the polling list have been polled, the PC may send data or management frames to any STAs. 

A STA indicates its CF-Pollability using the CF-Pollable subfield of the Capability 

Information field of Association Request and Reassociation Request frames. If a STA 

desires to change the PC’s record of CF- Pollability, that STA shall perform a re-association. 

During association, a CF-Pollable STA may request to be placed on the polling list, or to 

never be polled, by appropriate use of bits in the Capability Information field of the Associate 

Request or Reassociate Request frame, as shown in table 2.9. 

 

2 .5  Physical  Layer (PHY) service specification.  

Just like the IEEE 802.11 standard includes a common Medium Access Control 
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(MAC) Layer, which defines protocols that govern the operation of the wireless LAN; in 

addition, 802.11 comprises several alternative physical layers that specify the transmission and 

reception of 802.11 frames. Each PHY can consist of two protocols functions: the Physical  

Layer Convergence Procedure (PLCP) and Physical  Medium Dependent 

(PMD) sub-layers.  These are somewhat sophisticated terms that the standard uses to 

divide the major functions that occur within the Physical Layer. The PLCP prepares 802.11 

frames for transmission and directs the PMD to actually transmit signals, change radio 

channels, receive signals, and so on. 

The MAC layer communicates with the Physical Layer Convergence Protocol 

(PLCP) sublayer via primitives (a set of “instructive commands” or “fundamental 

instructions”) through a service access point (SAP). When the MAC layer instructs it to do 

so, the PLCP prepares MAC protocol data units (MPDUs) for transmission. The PLCP 

minimizes the dependence of the MAC layer on the PMD sublayer by mapping MPDUs 

into a frame format suitable for transmission by the PMD. The PLCP also delivers 

incoming frames from the wireless medium to the MAC layer.  

The PLCP appends a PHY-specific preamble and header fields to the MPDU that 

contain information needed by the Physical layer transmitters and receivers (Figure 2.26).  

The 802.11 standard refers to this composite frame (the MPDU with an additional PLCP 

preamble and header) as a PLCP protocol data unit (PPDU). The MPDU is also called 

the PLCP Service Data Unit (PSDU), and is typically referred to as such when referencing 

physical layer operations.  

 

Figure 2.26 -  PLCP frame format 
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What follows is a description of the fields that compose the PLCP preamble and the 

PLCD header: 

▪ Sync. This field consists of alternating 0s and 1s, alerting the 

receiver that a receivable signal is present. The receiver begins synchronizing with 

the incoming signal after detecting the Sync. 

▪ Start  Frame Delimiter. This field is always 1111001110100000 

and defines the beginning of a frame. 

▪ Signal. This field identifies the data rate of the 802.11 frame, with 

its binary value equal to the data rate divided by 100Kbps. For example, the field 

contains the value of 00001010 for 1Mbps, 00010100 for 2Mbps, and so on. The 

PLCP fields, however, are always sent at the lowest rate, which is 1Mbps. This 

ensures that the receiver is initially uses the correct demodulation mechanism, which 

changes with different data rates. 

▪ Service. This field is always set to 00000000, and the 802.11 

standard reserves it for future use. 

▪ Length. This field represents the number of microseconds that it 

takes to transmit the contents of the PPDU, and the receiver uses this information to 

determine the end of the frame. 

▪ Frame Check Sequence. In order to detect possible errors in the 

Physical Layer header, the standard defines this field for containing 16-bit cyclic 

redundancy check (CRC) result. The MAC Layer also performs error detection 

functions on the PPDU contents as well. 

PSDU. The PSDU, which stands for Physical Layer Service Data Unit, is a fancy 

name that represents the contents of the PPDU . 

Under the direction of the PLCP, the Physical Medium Dependent (PMD) sub-

layer provides transmission and reception of Physical layer data units between two stations 

via the wireless medium. To provide this service, the PMD interfaces directly with the 

wireless medium (that is, RF in the air) and provides modulation and demodulation of the 

frame transmissions. The PLCP and PMD sub-layers communicate via primitives, through 
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a SAP8, to govern the transmission and reception functions. This interaction is illustrated in 

Figure 2.27. 

 

Figure 2.27 -  Portion of the ISO/IEC basic reference model 

 

The general operation of the various Physical layers is very similar. To perform 

PLCP functions, the 802.11 standard specifies the use of state machines. Each state machine 

performs one of the following functions: 

 1.   Carrier  Sense/Clear Channel  Assessment (CS/CCA) 

Carrier Sense/Clear Channel Assessment is used to determine the state of the 

medium. The CS/CCA procedure is executed while the receiver is turned on and the station 

is not currently receiving or transmitting a packet. The CS/CCA procedure is used for two 

specific purposes: to detect the start of a network signal that can be received (CS) and to 

determine whether the channel is clear prior to transmitting a packet (CCA). 

 2 .    Transmit  (Tx) 

Transmit (Tx) is used to send individual octets of the data frame. The transmit 

                                                                    
8 Service Access Point 
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procedure is invoked by the CS/CCA procedure immediately upon receiving a PHY-

TXSTART.request (TXVECTOR) from the MAC sublayer. The CSMA/CA protocol is 

performed by the MAC with the PHY PLCP in the CS/CCA procedure prior to executing 

the transmit procedure. 

 3 .  Receive (Rx) 

Receive (Rx) is used to receive individual octets of the data frame. The receive 

procedure is invoked by the PLCP CS/CCA procedure upon detecting a portion of the 

preamble sync pattern followed by a valid SFD and PLCP Header. Although counter-

intuitive, the preamble and PLCP header are not “received”. Only the MAC frame is 

“received”. 

 

Following, a list of formats used for PSDU transmission:  

 

The IEEE 802.11b Direct  Sequence Spread Spectrum (DSSS) Physical  

layer  (802.11b) delivers frames at 1, 2, 5.5, and 11 Mbps rates in the 2.4 GHz ISM band. The 

original 802.11 Clause 15 DSSS standard specified only 1 and 2 Mbps data rates using only 

long preambles. The only coding/modulation used in 802.11 is Barker code with DBPSK (1 

Mbps) and DQPSK (2 Mbps). Figure 2.28 illustrates the construction of the DSSS PPDU, 

which includes a long preamble, the header, and the MPDU (PSDU) as specified in the 

802.11 standard. The preamble and the header are both transmitted at 1 Mbps when using 

the long preamble format. The MPDU is transmitted at the data rate specified by the 

transmitting station (or access point). The preamble enables the receiver to synchronize to 

the incoming signal properly before the actual content of the frame arrives. The header 

provides information about the frame, and the PSDU is the MPDU the transmitting station 

is sending. 

The 802.11b standard further specifies rates of 5.5 and 11 Mbps, each using CCK 

modulation.  
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Figure 2.28 - Long preamble version’s format 

 

The option of a short preamble was introduced in 1997, as an optional alternative, 

giving the administrator two configuration options. This is an illustration of the short 

version: 

 

 

 

Figure 2.29 - Short preamble version’s format 

 

Other PHY specifications are illustrated in  next table: 



  

Carmen J. Martin Martin – SAPIENZA Università di Roma 

67 

 

Table 2.14 -  High Rate PHY characteristics 

 

The OFDM system (IEEE 802.11a) provides a WLAN with data payload 

communication capabilities of 6, 9, 12, 18, 24, 36, 48, and 54 Mb/s. The support of 

transmitting and receiving at data rates of 6, 12, and 24 Mb/s is mandatory. The system uses 

52 subcarriers that are modulated using binary or quadrature phase shift keying (BPSK or 

QPSK) or using 16- or 64-quadrature amplitude modulation (16-QAM or 64-QAM). 

Forward error correction coding (convolutional coding) is used with a coding rate of 1/2, 2/3, 

or 3/4. 

 



  

Carmen J. Martin Martin – SAPIENZA Università di Roma 

68 

The support of transmitting and receiving at data rates of 3, 6, and 12 Mb/s is 

mandatory when using 10 MHz channel spacing. The half- clocked operation doubles 

symbol times and clear channel assessment (CCA) times when using 10 MHz channel 

spacing. 

 

 

 

 Figure 2.30 - OFDM P LCP frame format 

 

  

Another PHY specifications are illustrated in  the table 2.15: 
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Figure 2.15 - OFDM PHY characteristics 

 

The Extended Rate PHY (IEEE 802.11g) works in the 2.4 GHz band (like 

802.11b), but uses the same OFDM based transmission scheme as 802.11a. It operates at a 
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maximum physical layer bit rate of 54 Mbit/s exclusive of forward error correction codes, or 

about 22 Mbit/s average throughputs.  

The ERP builds on the payload data rates of 1 and 2 Mb/s, as described in (802.11 

b)that use DSSS modulation and builds on the payload data rates of 1, 2, 5.5, and 11 Mb/s, as 

described(802.11 b) that use DSSS, CCK, and optional PBCC modulations. The ERP 

draws to provide additional payload data rates of 6, 9, 12, 18, 24, 36, 48, and 54 Mb/s. Of 

these rates, transmission and reception capability for 1, 2, 5.5, 6, 11, 12, and 24 Mb/s data rates 

is mandatory. 

 

Two additional optional ERP-PBCC modulation modes with payload data rates of 

22 and 33 Mb/s are defined. An ERP-PBCC STA may implement 22 Mb/s alone or 22 and 

33 Mb/s. An optional modulation mode known as DSSS-OFDM is also incorporated with 

payload data rates of 6, 9, 12, 18, 24, 36, 48, and 54 Mb/s. 

 

An ERP STA shall support three different preamble and header formats. The first is 

the Long Preamble and header described in Figure 2.28.This PPDU provides 

interoperability with IEEE 802.11b STAs when using the 1, 2, 5.5, and 11 Mbit/s data rates; 

the optional DSSS-OFDM modulation at all OFDM rates; and the optional ERP-PBCC 

modulation at all ERP- PBCC rates. The second is the Short Preamble and header 

described in 2.29. The short preamble supports the rates 2, 5.5, and 11 Mbit/s as well as 

DSSS-OFDM and ERP-PBCC. The third is the ERP-OFDM preamble and header. In 

the case of modulations ERP-DSSS, ERP-CCK, DSSS-OFDM and ERP_PBCC, the 

utilized format can be short or long preamble, as shown in figures 2.28 and 2.29. However, 

under ERP-OFDM modulation on a physical level, the format corresponds to figure 2.30. 

 

Another PHY specifications about this ERP version are illustrated next: 
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Table 2.16 -  ERP PHY characteristics 

 

One important aspect is the list of WLAN channels, is the legally allowed IEEE 

802.11 or more commonly Wi-Fi Wireless LAN channels. 

The 802.11 workgroup currently documents use in three distinct frequency ranges, 

2.4 GHz, 3.6 GHz and 4.9/5.0 GHz bands [4]. Each range is divided into multitude of 

channels. Countries apply their own regulations to both the allowable channels, allowed 

users and maximum power levels within these frequency ranges. 

These regulations are subject to change at any time. 
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About 2.4 GHz band, potential Wireless LAN uses  this range (802.11b, 802.11g and 

802.11n). In this band are 14 channel spaced 5 MHz apart (with the exception of a 12 MHz 

spacing before Channel 14). As the protocol requires 25 MHz of channel separation, adjacent 

channels overlap and will interfere with each other potential uses of this range. 

 

 

Figure 2.31 -  2.4 GHz band 

 

 The 3.6 GHz band range is documented as only being allowed as a licensed 

band in the United States. 

The 5 GHz frequency band offers at least 19 non-overlapping channels rather than 

the 3 offered in the 2.4 GHz band. Better or worse performance with higher or lower 

frequencies (channels) may be realized, depending on the environment. 
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Chapter 3 

PATTERN RECOGNITION BY LINEAR  

CLASSIFICATION APPROACH 

 

 

3.1   Pattern Recognition task 

 

Pattern recognition is the scientific discipline whose goal is the classification of objects 

into a number of  categories or  classes.  

“The ease with which we recognize a face, computer-aided diagnosis,understand 

spoken words , read handwritten characters, identify our car keys in our pocket by feel, and 

decide whether an apple is ripe by its smell belies the astoundingly complex processes that 

underlie these acts of pattern recognition”. [5] 

The foregoing are just some examples from a much larger number of possible 

applications. Of course, to achieve the final goals in all of the applications, pattern recognition 

is closely linked with other scientific disciplines, such as linguistics, computer graphics, 

machine vision, and database design. 

Figure 3.1 shows the various stages of a complete pattern recognition system. These 

consists of a sensor that gathers the observations to be classified or described, a feature 

generation mechanism that computes numeric or symbolic information from the observations, 

a feature selection block (selecting which type of characteristics are more adequate to describe 

an object) and a classification scheme that does the actual job of classifying or describing 
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observations, relying on the extracted features. The task of the system evaluation stage is to 

assess the classifier’s performance. 

 

 

 

 

   

 

 

Figure 3.1 -  Basic stages envolved in the design of a classification system 

 

The classification design is usually based on the availability of a set of patterns that 

have already been classified or described. This set of patterns is termed the training set , 

and the resulting learning strategy is characterized as supervised learning. Learning can also 

be unsupervised, in the sense that the system is not given an a priori labeling of patterns, 

instead it itself establishes the classes based on the statistical regularities of the patterns. 

 

The classification or description scheme usually uses one of the following 

approaches: statistical (also known as decision theoretic) or syntactic (also known as 

structural). Statistical pattern recognition is based on statistical characterizations of patterns, 

assuming that the patterns are generated by a probabilistic system. Syntactical pattern 

recognition is based on the structural interrelationships of features.  

 

We will focus on the design of l inear  c lassi f iers ,  regardless of the underlying 

distributions describing the training data. The major advantage of linear classifiers is their 

simplicity and computational attractiveness. A l inear  c lassi f ier  basically works by making 

a classification decision based on the value of a linear combination of the features.   

     Patterns 

Feature 
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Extracti
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System 
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3.2 Linear Discrimination Functions and Decision 

Hyperplanes 

 

A discriminant function [5] that is a linear combination of the components of X can 

be written as: 

                            (3.1) 

Where w=  [w1,w2,……..,wd ] is know as the weight vector  and w0 as the threshold 

.And  X= [x1 ,x2 ,… xd ] is a point on the decision hyperplane. 

A two-category linear classifier implements the following decision rule: decide ω1 if 

g(x) > 0 and ω2 if g(x) < 0. Thus, x is assigned to ω1 if the inner product  wTX exceeds the 

threshold −w0 and ω2 otherwise. . Figure 3.2 displays a structural design, explaining the 

discriminant function implementation.  

 

Figure 3.2 - An illustration of  two-class case and decision rule 

 

If g(x)=0, X can ordinarily be assigned to either class. The equation g(x)=0 defines 

the decision surface that separates points assigned to ω1 from points assigned to ω2. When 

g(x) is linear, this decision surface is a hyperplane. If X1 and X2 are both on the decision 

surface, then: 
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                (3.2)  

 

Since the difference vector X1- X2 obviously lies on the decision hyperplane (for any 

X1, X2), it apparent from Eq.(3.2) that the vector w is orthogonal to the decision hyperplane. 

The figure 3.3 shows the corresponding geometry in two-class case: 

 

Figue 3.3 - The linear decision boundary 

 

The linear decision boundary H, where g(x) = wTX + w0 = 0, separates the feature 

space into two half-spaces R1 (where g(x) > 0) and R2 (where g(x) < 0). 

The discriminant function g(x) gives an algebraic measure of the distance from X to 

the hyperplane. Perhaps the easiest way to see this is to express X as: 

                          (3.3) 

where Xp is the normal projection of X onto H, and r is the desired algebraic 

distance  positive if X is on the positive side and negative if X is on the negative side. Then, 

since g(Xp) = 0, 
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                      (3.4)

  

or  

                          (3.5) 

In particular, the distance from the origin to H is given by /∥w∥. If w0 > 0 the 

originis on the positive side of H, and if w0 <0 it is on the negative side. If w0 =0, then g(x) 

has the homogeneous form wTX , and the hyperplane passes through the origin. 

To summarize, a linear discriminant function divides the feature space by a 

hyperplane decision surface. The orientation of the surface is determined by the normal 

vector w and the location of the surface is determined by the bias w0. The discriminant 

function g(x) is proportional to the signed distance from X to the hyperplane, with g(x) > 0 

when X is on the positive side, and g(x) < 0 when x is on the negative side. 

Our major concern now is to compute the unknown parameters w= 

[w1,w2,……,wd ] defining the decision hyperplanes. A great variety of linear classification 

algorithms is available depending on whether or not these or similar conditions are verified: 

separability of the classes to classify, knowledge of statistical information that identifies each 

class or the context in which the classification is made, as well as others. However, the vast 

majority of these algorithms follow one of the following methods of linear classification:  

 Perceptron Algorithm .One of the oldest algorithms used in 

machine learning. A basic requirement for the convergence is the linear separability 

of the classes. With perceptron mechanism we will approach the problem as a 

typical optimization task . Thus we need to adopt an appropriate cost function and 

an algorithmic scheme to optimize it. To this end, we choose the perceptron cost [5] 

defined as: 

                          

€ 

J(w) = δX
x∈Y
∑ wT X ,                                                      (3.6) 

where Y is the subset of the training vectors, which are misclassified by the hyper- 
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plane defined by the weight vector w. The variable δx, is chosen so that δx=- 1  if X 

∈ ω1    and δx= 1  if X ∈ ω2. Obviously, the sum in (3 .6)  is always positive and it 

becomes zero when Y  becomes the empty set, that is, if there are not misclassified 

vectors X.  Indeed, if X ∈ ω1   and it is misclassified, then wTX + w0 < 0 and δx < 0, 

and the product is positive. The result is the same for vectors originating from class 

ω2.When the cost function takes its minimum value, 0, a solution has been obtained, 

since all training feature vectors are correctly classified. 

 

To derive the algorithm for the iterative minimization of the cost function, 

we will adopt an iterative scheme in the spirit of the gradient descent method, that is 

                                  

€ 

w(t +1) = w(t) − ρt

∂J(w)
∂w w=w ( t )

                                      (3.7) 

where w(t) is the weight vector estimate at the t-th iteration step, and ρt  is a 

sequence of positive real numbers. However, we must be careful here. This is not 

defined at the points of discontinuity. From the definition in (3 .6),and at the points 

where this is valid, we get: 

                                               

€ 

∂J(w)
∂w

= δX
X∈Y
∑ X                                                         (3.8) 

 

Substituting (3.8) into (3.7) we obtain: 

   

€ 

w(t +1) = w(t) − ρt δX
X∈Y
∑ X                                               (3.9) 

 

 

The algorithm is initialized from an arbitrary weight vector w(O),  and the 

correction vector Σδ xX is formed using the misclassified features. The weight vector is 

then corrected according to the preceding rule. This is repeated until the algorithm 

converges to a solution, that is, all features are correctly classified. 
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Figure 3.4 -  Geometric interpretation of the perceptron algorithm 

 

 Least Squares Methods. As we have already pointed out, the 

attractiveness of linear classifiers lies in their simplicity. Thus, in many cases, 

although we know that the classes are not linearly separable, we still wish to adopt a 

linear classifier, despite the fact that this will lead to suboptimal performance from 

the classification error probability point of view. The least squares methods goal is 

to compute the corresponding weight vector under a suitable optimality criterion 

[5].  

 

In this case, the weight vector will be computed so as minimize the mean 

square error (MSE) between the desired and true outputs, that  is: 

 

    

€ 

J(w) = E y − XTw
2[ ] ,

                             

(3.10) 

 

         w =arg min J(w)                            (3.11) 
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 Mean Square  Estimation Revisited. Let y ,  X be two random 

vectors of dimensions (M x 1)  and (l x 1),  respectively, and assume that they are 

described by the joint pdf 1 p (y ,X).The task of interest is to estimate the value of y, 

given the value of X,  obtained from an experiment. [5] No doubt the classification 

task falls under this more general formulation.  

 Support Vector Machines. More formally, a support vector machine 

constructs a hyperplane or set of hyperplanes [5] in a high or infinite dimensional 

space, which could be used for classification, regression or other tasks. Intuitively, a 

good separation is achieved by the hyperplane that has the largest distance to the 

nearest training datapoints of any class (so-called functional margin), since in 

general the larger the margin the lower the generalization error of the classifier. 

 

 Figure 3.5  - Geometric interpretation of the Support Vector Machines 

 

3 .3  The Pocket Algorithm 

 

The pocket algorithm is a modification of perceptron learning that makes perceptron 

learning well behaved with non separable training data [6], even if that data is noisy and 

                                                                    
1 Probability Density Function 
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contradictory. Features of these algorithms include: speed -fast enough to be able to handle 

large sets of training data- and scaling properties -when the number of inputs is increases-. 

Non separable problems are a different story. Since no set of weights can correctly 

classify all training examples, the best that can be hoped for is a set of weights that correctly 

classifies as large a fraction of the training examples as possible. Such a set of weights is 

called optimal. 

Note that there are alternatives that do not fit the training data as well, for example 

computing weights that give minimum squared error. Such alternatives are necessary for 

algorithms, such as back-propagation, that require a differentiable error function. 

Perceptron learning is not well behaved for non separable problems. While it will 

eventually visit an optimal set of weights, it will not converge to any set of weights. Even 

worse, the algorithm can go from an optimal set of weights to a worst-possible set in one 

iteration, regardless of how many iterations have been taken previously. The pocket 

algorithm makes perceptron learning well behaved by adding positive feedback in order to 

stabilize the algorithm.  

There are several variants for different classes of problems. We are focused on the 

Pocket algorithm with Ratchet.  

 Applicabil ity :  Finite set of training examples. Examples may be repeated, noisy, 

and contradictory (E k =E l ,  C k ≠  C l) .  

 Algorithm: The basic idea of perceptron learning is to take a training example E k 

,  that is incorrectly classified by the current set of weights and to add E k to the current 

weights if C k =1 or subtract E k from the current weights if C k = -1. 

The basic idea of the pocket algorithm is to run perceptron learning while keeping 

an extra set of weights "in your pocket." Whenever the perceptron weights have a longest 

run of consecutive correct classifications of randomly selected training examples, these 

perceptron weights replace the pocket weights. 

 

3 .4 Stochastic Approximation and LMS 

The solution of (3.10) requires the computation of the correlation matrix and cross-

correlation vector. This presupposes knowledge of the underlying distributions, which in 
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general are not known. Thus, our major goal now becomes to see if it is possible to solve 

(3.11) without having this statistical information available. Consider an equation of the form 

E[F(Xk,w)]=0, where Xk,  k=1,2,...,is a sequence of random vectors from the same 

distribution, F ( . , .) a function, and w the vector of the unknown parameters. Then adopt 

the iterative scheme [7]: 

               

€ 

w(k) = w(k −1) − ρkF(Xk,w(k −1))                              (3.12) 

In other words, the place of the mean value (which cannot be computed due to lack 

of information) is taken by the samples of the random variables resulting from the 

experiments. It turns out that under mild conditions the iterative scheme converges in 

probability to the solution w of the original equation, provided that the sequence ρk satisfies 

the two conditions: 

   

€ 

ρk
k=1

∞

∑ →∞

ρk
2

k=1

∞

∑ < ∞

                                                                        (3.13) 

Let us now return to our original problem and apply the iteration to solve (3.11) the 

(3.12) becomes: 

                

€ 

w(k) = w(k −1) + ρkXk(yk − Xk

Tw(k −1))                                      (3.14) 

where (yk ,Xk) are the desired output(±1) input training sample pairs, successively 

presented to the algorithm. The algorithm is know as the least mean squares (LMS) or 

Widrow_Hoff algorithm. The algorithm converges asymptotically to the MSE solution. 

 

3 .5  Sum of Error Squares Estimation 

 

A criterion closely related to the MSE is  the sum of error squares criterion defined 

as [7]: 
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€ 

J(w) = (yk
k=1

N

∑ − Xk
Tw)2 = ek

2

k=1

N

∑
                                           (3.15)

 

In other words, the errors between the desired output of the classifier (±l in the two 

class case) and the true output are summed up over all the available training feature vectors, 

instead of averaging them out. In this way we overcome the need for explicit knowledge of 

the underlying pdf's. Minimizing (3.15)with respect to w results in: 

                       

€ 

Xk (yk − Xk
T w
^
)

k=1

N

∑ = 0⇒ ( Xk
k=1

N

∑ Xk
T )w

^
= (Xk

k=1

N

∑ yk )                        (3.16) 

For the sake of mathematical formulation, let us define: 

   

  

         

                                                                         

                                                                                                  

                                                           

 

                        (3.17) 

That is, Q is an (N x l) matrix whose rows are the available training feature vectors, 

and y  is a vector consisting of the corresponding desired responses. Then: 

 

        

€ 

Xi
i=1

N

∑ Xi
T =QQT

Xi
i=1

N

∑ y =QT y
                                     (3.18) 

 

Hence, Equation (3.18) can now be written as: 

                                          

€ 

(QTQ)w
^

=QT y⇒ w
^

= (QTQ)−1QT y                                    (3.19) 

 

Q=                             =                                                                           y  = 

y1 

y2 

    . 

    . 

yN 

 

X11      X12    X13   . . …. X1l 

X21     X22    X23 . . …… X2l 

X31     X32    X33 . . ……. X3l 

.    .     .   .   .  .  .  

XN1     XN2  XN3 . .…XNl 

 

XN1    XN2    XN3 . . ….  XNl 

 

 

 

 

 

 

X1T 

X2T 

 . 

 . 

XNT 

 

X1T 

 

x 
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Thus, the optimal weight vector is again provided as the solution of a linear set of 

equations. Matrix QTQ is known as the sample correlation matrix. Matrix Q+=(QTQ)-1 QT is 

known as the pseudoinverse of Q, and it is meaningful only if  QTQ is invertible, that is, Q is 

of rank l. If Q is an (l×l) square and invertible matrix, then it is straightforward to see that 

Q+=Q-l .In such a case the estimated weight vector is the solution of the linear system Xw= 

y.  If, however, there are more equations than unknowns, N > 1, as is the usual case in 

pattern recognition. there is  not, in general, a solution. The solution obtained by the 

pseudoinverse is the vector that minimizes the sum of error squares. It is easy to show that 

(under mild assumptions) the sum of error squares tends to the MSE solution for large 

values of N. 

 

3 .6 Logistic Discrimination 

 

In logistic discrimination [7] the logarithm of the likelihood ratios is modeled via 

linear function. That is, 

                           

€ 

ln
P(ω i X)
P(ωM X)

= wi,0 + wi
T X                                                                      (3.20) 

In the denominator, any class other than  ωM   can also be used. The unknown 

parameters wi, must be chosen to ensure that probabilities add to one. That ,is: 

  

€ 

P(ω iX )∑ =1                          (3.21) 

 

Combining (3.20) and (3.21), it is straightforward to see that this type of linear 

modeling is equivalent to an exponential modeling of the a posteriori probabilities: 

€ 

P(ωM X) =
1

1+ exp(wi,0 + wi
T X)∑

i =1,2,...,M −1                       (3.22) 
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€ 

P(ω i X) =
exp(wi,0 + wi

T X)
1+ exp(wi,0 + wi

T X)∑
i =1,2,...,M −1                (3.23) 

To estimate the set of the unknown parameters, a maximum likelihood approach is 

usually employed. 

 

3 .7 Multi-Class Case 

 

It often becomes necessary to classify by differentiation amongst more than two 

classes. Generalization in this cases turns into a complex matter. A linear discriminator 

function is defined for each one of the classes, taking the following form: ωi, i=1,2,…M. A 

feature vector (in the(l+1)-dimensional space to account for the threshold) is classified in ωi 

class if: 

                                  

€ 

wi
T X > wj

T X                    ∀ j≠i                                  (3.24) 

Here we describe plausible strategies to classify in such cases [5]:  

 Building M linear classifiers by solving ωi, /not ωi,  dichotomies (Linear 

Machine ) 

      

Figure 3.6 -  Linear decision boundaries for a four-class problem. ωi/not ωi 

dichotomies 
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 Use M(M − 1)/2 perceptrons: one for every pair ωi/ωj,  dichotomies 

                       

                      

Figure 3.7 -  Linear decision boundaries for a four-class problem. ωi /ωj dichotomies 

and the corresponding decision boundaries Hij. 

 

Regardless of the classification algorithm in use, a linear machine can be 

implemented using c linear neurons, one for each category and each one with the 

corresponding decision hyperplane  gi(X). Assigning X  to ùi if : 

  

                                   

€ 

gi(X) > gj(X)      ∀ j≠I                                                      (3.25) 

A linear machine divides the feature space into M decision regions, with gi(X) being 

the largest discriminant if  X is in region Ri. 

We can transform the linear machine learning problem to that of learning a single 

perceptron by using the Kesler’s construction [7]. 

In this case, we will perform an expansion of feature’s space, following these steps: 
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1. For each training vector of the ωi  class,  (M-1) vectors are built in this 

manner 

€ 

Xij = [0T ,0T ,...,XT ,...− XT ,...,0T ]T  with dimensions 

€ 

(l +1)M ×1. These vectors 

contain zero blocks, except in the cells i,j occupied by XT   and  -XT ,respectively, ∀j ≠i. 

2. We  build the vector block 

€ 

w = [w1T ,w2
T ,...wM

T ]T . 

3. If X 

€ 

∈ ωi , that implies 

€ 

wT Xij > 0,∀j =1,2,....M, j ≠ i  . 

The objective now is to design a linear classifier in the extended 

€ 

(l +1)M ×1dimensional space, in such way that everyone of the 

€ 

(M −1) × N  vectors lies on 

its positive side. 
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Chapter 4  

 

PACKET CLASSIFIER 

 

 

4.1  Generalized Classif ication Approach 

 

We started by designing a generic linear classifier that was able to distinguish 

amongst C classes, each class being characterized by M features. In general, a linear classifier 

divides the feature space into C regions; this division comes about through calculation of a 

decision hyperplane that characterize the region of the space where each class is located: 

                  

€ 

gj(x) = w0, j + wi , j xi
i=1

M

∑ , j = 1, 2, ..,C ,
                                 (4.1)  

where  w = w0 ,w1,......,wM[ ]   as explained in the previous chapter  is known as the weight 

vector, and X = x1, x2 ,....., xM[ ]  is a point on the decision hyperplane. 

The classifier’s objective is to find each discrimination function, and generate a 

decision using the major score criterion. This score represents a measure of similarity 

between the object and each class. The classification module was implemented on 

MATLAB, using four of the classification methods described on Chapter 3, selected 

because of their simplicity and computational appeal: Pocket, Perceptron, LMS and SOE. 

Each one of these methods provides a decision concerning classification and a 

geometrical interpretation of the job of discriminating amongst classes.  
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To begin with, features of each class are defined through their distribution 

probability functions, the algorithm foresees to work with features that follow distribution of 

these types: Normal, Rayleigh or Uniform; using training vectors that conform the 

characterization of each class. Once the training set for each class is defined, it is utilized for 

the construction of each classifier –regardless of the algorithm being developed. 

Figures 4.1 and 4.2 illustrate examples of characterization of the 3 features that define 

each class, in a 2-Classes case (C=2, M=3). Figure 4.1 represents characterization for class 1: 

o Feature 1: Uniform Distribution, U (1,2) 

o Feature 2: Normal Distribution,  N  (2,0.64) 

o Feature 3: Uniform Distribution U (1,5) 

     Figure 4.1 - Example of Characterization Stage (Class 1) 

 

On the other hand, class 2 is characterized this way: 

o           Feature 1: Uniform Distribution, U (2,3) 

o          Feature 2: Rayleigh Distribution, Rayleigh (0.16) 

o           Feature 3: Uniform Distribution, U (6,11) 
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The following figure presents a graphic interpretation of this characterization: 

 

 

              

Figure 4.2 - Example of Characterization Stage (Class 2) 

 

 

Once characterization of the classes through definition of each feature is 

accomplished, training vectors representing each class are built; where every vector has 3 

components , with the values that correspond to each feature. 

 

The following figure represents the corresponding features space: 
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Figure 4.3 - Training Set Example (C=2, M=3) 

 

For each of the implemented algorithms, a plane is built in which features space is 

divided in two regions; for the Perceptron algorithm’s case, separation is illustrated as 

follows: 

   

Figure 4.4 -  Decision Plane according to Perceptron Algorithm 
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The solution for the Pocket Algorithm’s case will look this: 

 

Figure 4.5 - Decision Plane according to Pocket Algorithm 

 

The Figure 4.6 displays the LMS algorithm’s decisions plane: 

 

Figure 4.6 -  Decision Plane according to LMS Algorithm 
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Finally, the SOE algorithm also displays a graphic interpretation of the calculated 

discriminant function: 

 

 

Figure 4.7 - Discriminant Function according to SOE Algorithm 

 

 

4.2  Feature Selection  

 

As explained on section 1.3, this work is oriented towards developing a module that 

can achieve automatic recognition of technologies and interference operating over the ISM 

bands, specifically in the 2.4 GHz band. This classification block is one of the cornerstones of 

the AIR-AWARE Project. The project’s objective is to create a black box — the AIR-

AWARE module — capable of classifying technologies, as well as different types of 

interference in play [8]. 
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Figure 4.8 - The AIR-AWARE module 

As figure 4.8 displays, a beginning block consists of a device capable of spectrum 

sensing, with a good time resolution (in the µsec order). This device is not in capacity to 

demodulate or decode, but it is able to provide reliable information about presence or 

absence of energy over time. The design of this block is outside the realm of this project, 

however the following figure show two types of implementation of an Energy Detector: the 

first a Conventional energy detector [9], consisting of a low pass filter to reject out of band 

noise and adjacent signals, Nyquist sampling A/D converter, square-law device and 

integrator (Figure 4.9 (a)). 

 

Figure 4.9 - Energy Detector 

 

In contrast, figure b represents an alternative approach which could be devised by 

using a periodogram to estimate the spectrum via squared magnitude of the FFT. 

The next block of the AIR-AWARE module is feature extraction stage. To achieve 
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recognition of technologies, a set of features should be defined; this means, each pattern to 

classify must be translated to a vector that contains the appropriate characterizing features. 

Feature selection depends upon the fundamental characteristics of the classes to classify; a 

good candidate will be a characteristic with great discriminatory power between classes. 

This study is focused on 802.11 (Wi-Fi) and 802.15.1 (Bluetooth) network recognition. 

Previous work, as [1], has addressed a similar problem, by classifying Wi-Fi vs. Bluetooth, 

using a spectrum sensing procedure based on distributed detection theory. The present 

work extends beyond previous investigations by considering Wi-Fi real traffic captures, and 

by focusing feature extraction and classification on MAC sublayer characteristics, leading to 

simplicity and computational efficiency. 

The selection of features phase was took over in [10] through extensive analysis of 

MAC sublayer communication procedures based on real Wi-Fi traffic, where the main goal 

was to identify MAC sublayer [1,2] specific features for each of the above technologies and, 

through these, achieve differentiation.  

The automatic recognition approach proposed on this work is based on the 

utilization of two features: the SIFS, with high discriminatory richness [10] and the 

Maximum Packet Duration between two silence Gaps. 

The first feature is the time interval between PPDUs, defined in Section 2.3 as Short 

Inter Frame Space. Of all existing IFS types, SIFS has a nominal value of 10µs for the ISM 

2.4GHz band, and is the likely to occur in a scenario with medium to high traffic; it is usually 

used by a node responding to any polling, and always prior to: a) transmission of an ACK 

frame; b) a CTS frame; c) a second or subsequent PPDU of a fragment burst.  

The second proposed feature is the duration of the longest packet considering all the 

packets between two consecutive silence gaps, previously considered as SIFS. 

Note that both proposed features are extremely simple and easy to extract by using 

the simplest hardware: an energy detector. 

Once features are selected: Duration of Silence Gaps (feature 1) and Maximum 

Packet Duration between two Silence Gaps (feature 2); the module Feature Extraction must 

be able to extract each of these parameters in any sequence of packets at its input. From here, 

every packet sequence is translated into a set of point on a bidimensional plane with 
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coordinates [x,y ], where the x axis represents the Duration of Silence Gaps and the y axis 

represents the Maximum Packet Duration between two Silence Gaps. 

 

4.3   Experimentation 

 

4.3 .1  Training Set  Construction 

As detailed in Chapter 3, before implementation of any linear classification algorithm 

is possible, a strong set of characteristic vectors for each class is necessary: a training set. 

Before anything else, to achieve Wi-Fi vs. Bluetooth recognition: 

 Wi-Fi real traffic was utilized. 

 Bluetooth traffic was simulated considering [12 ] the case of 

a Piconet with two devices in connection state (one master and one slave). 

Data packets sent by the master can occupy 1, 3 or 5 time slots (where the 

time slot is 625µs), according to their length, whereas acknowledgement 

packets (NULL packets, with a fixed length of 126 bits) occupy 1 time slot. 

The duration of the remaining 30% is uniformly distributed between 

minimum and maximum values (see Table I).According to the standard, for 

every packet arrival time a jitter of ± 10µs has been set, to consider imperfect 

synchronization between the two devices. According to [12] the jitter was 

modeled by a Gaussian distribution with zero mean and standard deviation 

s=10/3µs.  

To enhance variability in the generation of this packet sequence, two 

different scenarios were considered on the first one, 100% of transmitted 

packets occupy just one Time Slot; whereas the second scenario represents 

higher variability with 80% of the packets occupying 1 Time Slot, while 15% 

represent 3 Time Slot duration and 5% occupy % Time Slots. In every 

scenario, 70 % of the data packets have a duration that is fixed by the 

protocol [11].The duration of the remaining 30% is uniformly distributed 

between minimum and maximum values [12]. 

 



  

Carmen J. Martin Martin – SAPIENZA Università di Roma 

97 

 Fixed duration Min.  Duration Max.  Duration 

Time slot  625µs   

1 -t ime-slot  packet   126µs 366µs 

3-t ime-slot  packet   1250µs 1622µs 

5-t ime-slot  packet   2500µs 2870µs 

NULL packet  126µs   

Table 4.1 -  Bluetooth Standard Specifications 

 

For the construction of the training set that characterizes each class, six 1000-packet 

captures for Wi-Fi and two 6000-packet MATLAB simulated Bluetooth captures –single 

slot or multi slot for each scenario- were utilized. Each capture was translated into a set of 

points (2093 points) after the feature extraction stage. This sets were then located on a 

bidimensional space, reflecting characteristic regions of each class on the plane. The 

following figures illustrate the respective training sets, for the Bluetooth multi slot and single 

slot communications cases. 

                 

Figure 4.10 - Features Plane with Single-Slot Communication at Bluetooth Class 
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Because in Figure 4.10 represents the Bluetooth single-slot case, the corresponding 

training set for the Bluetooth class displays lower variability and therefore lower dispersion 

amongst the points that constitute that class; this in turn favors separability of the classes to 

classify.  

 

Figure 4.11 - Data Point Density Histogram with Single-Slot Communication at 

Bluetooth Class 

 

Through Figure 4.11, we are able to verify how the high density of points 

corresponding to the Wi-Fi class have a Silence Gaps duration around 10 µsec; whereas for 

the Bluetooth class, in the single slot scenario, duration of silence gaps fluctuates between 

200 and 400 µsec, while maximum packet duration remains always lower than 500 µsec. 

However, the following figure, representing the multi-slot case, presents a less 

restricted training set behavior. In fact the presence of a few Wi-Fi points invading the 

Bluetooth “zone” becomes noticeable. Nonetheless, capture file revision indicated that these 

corresponded to non-SIFS, i.e. erroneously estimated SIFS. In any case, these points were 

less than 1% of total. 
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Figure 4.12 -  Features Plane with Multi-Slot Communication at Bluetooth Class 

 

The next figure presents a data point density histogram, useful to comprehend 

further the distribution of these points and their proportion in respect to the training set. 

 

Figure 4.13 -  Data Point Density Histogram with Multi-Slot Communication at 

Bluetooth Class. 
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Afterwards, when training sets were defined, each of the chosen classification 

algorithms was implemented: Pocket, Perceptron, LMS and SOE. Graphic interpretation 

of each the algorithms is presented as follows, differentiating between the single slot and 

multi slot cases.  

 

Figure 4.14 Automatic classification of Wi-Fi vs. Bluetooth Single-Slot 

 

 

Figure 4.15 Automatic classification of Wi-Fi vs. Bluetooth Multi-Slot. 
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It becomes evident –when confronting the single and multi slot scenarios- that due to 

the separability of the classes present on the first scenario all methods reach convergence and 

therefore all training vectors- each corresponding to a class- are classified correctly. On the 

contrary, the second scenario presents a much more complex set to classify –due to the scarce 

separability of the classes- in this case the utilized classification method classifies erroneously 

a percentage of the points. The following table presents the error percentages of each 

algorithm:  

 

 % Wi-Fi vectors 

erroneous 

% Bluetooth vectors 

erroneous 

 

Pocket 

1% 

[22/2192] 

0% 

[0/2192] 

 

Perceptron 

1% 

[22/2192] 

0.32% 

[7/2192] 

 

LMS 

0.5% 

[11/2192] 

31.75% 

[696/2192] 

 

SOE 

0.5% 

[11/2192] 

26.27% 

[576/2192] 

Table 4.2  Percentage of  Error over the Training Set for each algorithm -Wi-Fi and 

Bluetooth Multi-slot Communication Class-. 

 

 

To add fortitude to the classification and analyze the percentage of classification 

errors in regards to the number of training vectors, a second strategy with a higher number of 

training vectors was utilized. For the Wi-Fi case, seventeen (16) 1000-packet captures were 

utilized. For the Bluetooth case, simulated MATLAB captures consisted in two 20000-

packet sequences corresponding to either single slot or multi slot cases. In this case, features 

space is boarded by a higher quantity of points (in order to 9000). Following, an illustration 

of the respective features space, for each Bluetooth scenario considered:                
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Figure 4.16 -  Features Plane with Single-Slot Communication at Bluetooth Class        

(double dimension training) 

 

 

Figure 4.17 -  Data Point Density Histogram with Single-Slot Communication at 

Bluetooth Class. (double dimension training) 



  

Carmen J. Martin Martin – SAPIENZA Università di Roma 

103 

The resulting training set for the Multi-Slot case: 

 

Figure 4.18 - Features Plane with Multi-Slot Communication at Bluetooth Class 

(double dimension training) 

 

The corresponding data point density is displayed as follows: 

 

Figure 4.19 -  Data Point Density Histogram with Multi-Slot Communication at 

Bluetooth Class (double dimension training) 
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The following figures illustrates the implementations of the classification algorithms, 

in this considering a training set of broader dimensions.  

 

Figure 4.20 -  Automatic classification of Wi-Fi vs. Bluetooth Single-Slot  

(double dimension training) 

 

 

Figure 4.21 - Automatic classification of Wi-Fi vs. Bluetooth Multi-Slot  

(double dimension training) 
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Again, separability of the classes favors convergence of the classification algorithms 

on the first scenario; while hurdling complete separation of the training vectors in the second 

scenario, resulting in the following percentages of error per each algorithm: 

 

 % Wi-Fi vectors 

erroneous 

% Bluetooth vectors 

erroneous 

 

Pocket 

1.23% 

[53/4294] 

0.02% 

[1/4294] 

 

Perceptron 

1.56% 

[67/4294] 

0% 

[0/4294] 

 

LMS 

0.63% 

[27/4294] 

31.8% 

[1366/4294] 

 

SOE 

0.79% 

[34/4294] 

8.17% 

[351/4294] 

 

Table 4.3 -  Percentage of Error for each algorithm over the Training Set Wi-Fi and 

Bluetooth Multi-slot Communication Class. (Double dimension training) 

 

 

4.3 .2  Classif ication Results  

 

In order to test each of them, the implemented classifiers were then applied to data 

not belonging to the training sets, i.e. a new 1000-packet Wi-Fi capture (1.4 seconds capture 

duration), and two new 1000-packets Bluetooth simulations (Scenarios 1 and 2) were 

generated (each around 0.7 seconds long). Results of classification percentage of Wi-Fi vs. 

Bluetooth (single-slot case), when the input to the classifier is formed by either Wi-Fi 

captures or Bluetooth sequences of packets are reported in Tables II and III, for the single 

vs. multi-slot Bluetooth, respectively. 
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It bears weight, as explained before, that each sequence to classify is first processed 

by the feature extraction block, and therefore translated into sets of points onto the features 

space; where the utilized sequences correspond to 352 points for the Wi-Fi case (1000 

packets), and 456 points for the Bluetooth case. Percentages on the subsequent tables are 

based on this number of points, where for each case (being the input either Wi-Fi or 

Bluetooth), and according to each algorithm, the percentage of points distinguished as 

belonging to either of the classes is reflected.  

 

 Classifier Input Network Classification  

into  Wi-Fi  

Classification  

into single-slot Bluetooth  

Pocket Bluetooth 0% [0/456] 100% [456/456] 

Pocket Wi-Fi 100% [352/352] 0% [0/352] 

Perceptron Bluetooth 0% [0/456] 100% [456/456] 

Perceptron Wi-Fi 100% [352/352] 0% [0/352] 

LMS Bluetooth 0% [0/456] 100% [456/456] 

LMS Wi-Fi 100% [352/352] 0% [0/352] 

SOE Bluetooth 0% [0/456] 100% [456/456] 

SOE Wi-Fi 100% [352/352] 0% [0/352] 

 

Table 4.4 -  Classification results with single-slot Communications at Bluetooth 

class. 

 

The results of automatic classification considering the second Bluetooth scenario 

Multi –Slot are display on the following Table.  
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 Classifier Input Network Classification  

into  Wi-Fi  

Classification 

 into multi-slot Bluetooth  

Pocket Bluetooth 0% [0/462] 100% [462/462] 

Pocket Wi-Fi 98.86% [348/352] 1.14% [4/352] 

Perceptron Bluetooth 0.43% [2/462] 99.57% [460/462] 

Perceptron Wi-Fi 98.86% [348/352] 1.14% [4/352] 

LMS Bluetooth 34.85% [161/462] 65.15% [301/462] 

LMS Wi-Fi 99.43% [350/352] 0.57% [2/352] 

SOE Bluetooth 29.87% [138/462] 70.13% [324/462] 

SOE Wi-Fi 99.72% [351/352] 0.28% [1/352] 

  

Table 4.5 -  Classification results with multi-slot Communications at Bluetooth class 

 

It became interesting to study how automatic recognition will operate when the 

input was a mixed flow (multi-network environment). Given that the Wi-Fi capture is on real 

traffic, while the Bluetooth streams were simulated, the mixture could be controlled by 

software. In particular, three different mixes were generated: 

 

1. pre-dominant Wi-Fi (1000 Wi-Fi packets vs. 200 Bluetooth 

packets);  

2.  balanced (1000 Wi-Fi packets vs. 1000 Bluetooth packets);  

3.  Bluetooth pre-dominant (1000 Wi-Fi vs. 2000 Bluetooth 

packets).  
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The same considerations where applied to the single and multi slot Bluetooth 

scenarios, obtaining the results shown as follows: 

 

 

 
Input Network  Classification 

 into  Wi-Fi 

Classification 

 into single-slot Bluetooth  

Pocket Bluetooth pre-dominant 38.32% [292/762] 61.68% [470/762] 

Pocket Wi-Fi pre-dominant 86.45% [351/406] 13.55% [55/406] 

Pocket Balanced 58.21% [303/520] 41.79% [217/520] 

Perceptron Bluetooth pre-dominant 38.45% [293/762] 61.55% [469/762] 

Perceptron Wi-Fi pre-dominant 86.7% [352/406] 13.3% [54/406] 

Perceptron Balanced 57.83% [301/520] 42.17% [219/520] 

LMS Bluetooth pre-dominant 38.32% [292/762] 61.68% [470/762] 

LMS Wi-Fi pre-dominant 86.45% [351/406] 13.55% [55/406] 

LMS Balanced 58.21% [303/520] 41.79% [217/520] 

SOE Bluetooth pre-dominant 38.58% [294/762] 61.42% [468/762] 

SOE Wi-Fi pre-dominant 86.70% [352/406] 13.3% [54/406] 

SOE Balanced 58.21% [303/520] 41.79% [217/520] 

 

Table 4.6 -  Classification results with single-slot Communications at Bluetooth 

class. (Mixed Input) 
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Input Network  Classification into Wi-Fi Classification into multi-slot Bluetooth  

      Pocket Bluetooth pre-dominant 17.10% [133/778] 82.90% [645/778] 

Pocket Wi-Fi pre-dominant 86.07% [315/366] 13.93% [51/366] 

Pocket Balanced 41.34% [210/508] 58.66% [298/508] 

Perceptron Bluetooth pre-dominant 17.22% [134/778] 82.78% [644/778] 

Perceptron Wi-Fi pre-dominant 86.07% [315/366] 13.93% [51/366] 

Perceptron Balanced 41.53% [211/508] 58.47% [297/508] 

LMS Bluetooth pre-dominant 37.79% [294/778] 62.21% [484/778] 

LMS Wi-Fi pre-dominant 90.16% [330/366] 9.84% [36/366] 

LMS Balanced 56.89% [289/508] 43.11% [219/508] 

SOE Bluetooth pre-dominant 36.89% [287/778] 63.11% [491/778] 

SOE Wi-Fi pre-dominant 90.71% [332/366] 9.29% [34/366] 

SOE Balanced 56.10% [285/508] 43.90% [223/508] 

 

Table 4.7 -  Classification results with multi-slot Communications at Bluetooth 

class. (Mixed Input) 

 

Also, results from classification are reflected, related to a training set of higher 

dimension (approximately double in size). In order to test the classification algorithms a 

1000-packet Wi-Fi capture and 2 relative sequences of 1000 Bluetooth packets were utilized –

in both single-slot and multi-slot cases-. 
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 Classifier Input Network Classification into Wi-Fi  Classification into single-slot Bluetooth  

Pocket Bluetooth 0% [0/440] 100% [440/440] 

Pocket Wi-Fi 100% [355/355] 0% [0/355] 

Perceptron Bluetooth 0% [0/440] 100% [440/440] 

Perceptron Wi-Fi 100% [355/355] 0% [0/355] 

LMS Bluetooth 0% [0/440] 100% [440/440] 

LMS Wi-Fi 100% [355/355] 0% [0/355] 

SOE Bluetooth 0% [0/440] 100% [440/440] 

SOE Wi-Fi 100% [355/355] 0% [0/355] 

Table 4.8 - Classification results with single-slot Communications at 

Bluetooth class. (Double dimension training) 

The results of automatic classification considering the Bluetooth scenario multi slot are: 

 Classifier Input Network Classification into  Wi-Fi  Classification into multi-slot Bluetooth  

Pocket Bluetooth 0% [0/447] 100% [447/447] 

Pocket Wi-Fi 98.59% [350/355] 1.41% [5/355] 

Perceptron Bluetooth 0% [0/447] 100% [447/447] 

Perceptron Wi-Fi 98.31% [349/355] 1.69% [6/355] 

LMS Bluetooth 33.3% [149/447] 66.67% [298/447] 

LMS Wi-Fi 99.44% [353/355] 0.56% [2/355] 

SOE Bluetooth 8.73% [39/447] 91.28% [408/447] 

SOE Wi-Fi 98.87% [351/355] 1.13% [4/355] 

Table 4.9 -  Classification results with multi -slot Communications at Bluetooth class 

(Double dimension training) 
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In much the same way, with the goal of analyzing the performance of the classifier 

when training set dimension varies, a simulation of mixed packet flow was generated 

(simulated multi-network environment); the considerations of this generation match those of 

the previous case. 

Results of the single-slot and multi-slot cases are displayed in the following tables.  

 
Input Network Classification 

into  Wi-Fi 

Classification 

into single-slot Bluetooth 

 Pocket Bluetooth pre-dominant 36.72% [282/768] 63.28% [486/768] 

Pocket Wi-Fi pre-dominant 86.52% [353/408] 13.48% [55/408] 

Pocket Balanced 57.14% [324/567] 42.86% [243/567] 

Perceptron Bluetooth pre-dominant 36.07% [277/768] 63.93% [491/768] 

Perceptron Wi-Fi pre-dominant 86.03% [351/408] 13.97% [57/408] 

Perceptron Balanced 56.97% [323/567] 43.03% [244/567] 

LMS Bluetooth pre-dominant 36.46% [280/768] 63.54% [488/768] 

LMS Wi-Fi pre-dominant 86.27% [352/408] 13.73% [56/408] 

LMS Balanced 57.14% [324/567] 42.88% [243/567] 

SOE Bluetooth pre-dominant 36.71% [282/768] 63.28% [486/768] 

SOE Wi-Fi pre-dominant 86.52% [353/408] 13.48% [55/408] 

SOE Balanced 57.14% [324/567] 42.88% [243/567] 

 

Table 4.10 -  Classification results with single-slot Communications at Bluetooth 

class. (Mixed) (Double dimension training) 
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Input Network  Classification 

 into    Wi-Fi 

Classification 

 into multi-slot Bluetooth  

      Pocket Bluetooth pre-dominant 17.35% [136/784] 82.65% [648/784] 

Pocket Wi-Fi pre-dominant 82.25% [329/400] 17.75% [71/400] 

Pocket Balanced 42.09% [213/506] 57.91% [293/506] 

  Perceptron Bluetooth pre-dominant 16.45% [129/784] 83.55% [655/784] 

Perceptron Wi-Fi pre-dominant 82.25% [329/400] 17.75% [71/400] 

Perceptron Balanced 41.3% [209/506] 58.7% [297/506] 

LMS Bluetooth pre-dominant 40.05% [314/784] 59.95% [470/784] 

LMS Wi-Fi pre-dominant 86.25% [346/400] 13.75% [55/400] 

LMS Balanced 60.87% [308/506] 39.13% [198/506] 

SOE Bluetooth pre-dominant 22.70% [178/784] 77.30% [606/784] 

SOE Wi-Fi pre-dominant 83.75% [335/400] 16.25% [65/400] 

SOE Balanced 47.23% [239/506] 52.77% [267/506] 

 

Table 4.11 Classification results with multi-slot Communications at Bluetooth class. 

(Mixed) (Double dimension training) 
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Conclusions and Future Work  

 

As described in the above Section, network classification of Wi-Fi vs. Bluetooth was 

attempted based on the definition of two features: the maximum packet duration between 

two silence gaps, and duration of silence gaps. Four different classification algorithms were 

used: Pocket, Perceptron, LMS, and SOE. We were able to conclude the following from the 

results obtained during the experimentation stage: 

1. For the Wi-Fi vs. single-slot Bluetooth case all proposed classifiers achieved perfect 

classification into the two classes, when one traffic stream (either Wi-Fi or Bluetooth) was 

given as input to the classifier. This result shows that the selected features were appropriate 

since they completely identify these two classes. 

2. For the Wi-Fi vs. multi-slot Bluetooth case, classification is not as perfect as in the 

previous case, and depends upon classification algorithm as well as input data to the 

classifier. Among all the proposed classification strategies, Pocket and Perceptron emerge as 

the most successful and reliable, leading to a classification rate greater than 98%.  

3. For the mixed flow experimentation, results point out the adequacy of the classifiers 

in environments with heavy predominance of one technology, by their ability to reveal both 

technologies in each case.  This ability is shown by comparing results from the single-slot and 

multi-slot cases. We were able to determine that only the Pocket and Perceptron algorithms 

are capable of performing a reliable classification. Results point out to plausible 

detection when both technologies are present simultaneously. To improve accuracy of 

decision, post processing will be required . 

 

Future work  could focus on investigating whether the selected features extend 

beyond the present case of two technologies in the ISM band. In particular, the AIR-

AWARE project will proceed by incorporating the IEEE 802.15.4 technology (ZigBee) into  

the set of possible classes. Preliminary investigations, based on the analysis of the 802.15.4 

standard specifications, show that SIFS is also defined for ZigBee networks, with a nominal 

value of 192µs [16] in the ISM 2.4 GHZ band. This value compared to extracted features on 
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this paper experiments, should allow the classification algorithms to obtain good separation 

for all three classes (Wi-Fi vs. Bluetooth vs. ZigBee).  
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Generalized Classifier Code: 

1 .  Training2:  

%Generalized Classifier Script 
  
  
  
%Generating Features second Probability Density Function 
  
  
C=input('\n Number of Classes to be classifier:') ; % Number of Classes 
  
M=input('\n Number of Features:'); % Number of Features 
  
N=input('\n Choose the number of training for only Class:') ; % Training 
Number 
  
fprintf('\n -Gaussian Distribution = 1 ') 
  
fprintf('\n -Rayleigh Distribution = 2 ') 
  
fprintf('\n -Uniform Distribution = 3 \n') 
  
fprintf('\n Choose second a number the distributions for each feature \n') 
  
Distributions=zeros(M,C); 
  
for c=1:C 
     
    fprintf('\n * Choose the feature distribution for the Class %d \n ',c) 
     
     for f=1:M 
          
         fprintf('\n  For the feature: %d \n',f) 
          
         Distributions(f,c)=input('\n Choose the distribution:'); 
          
     end 
end 
  
  
% Feature's Characterization 
  
Distributionx=Distributions; 
  
Vector_parameters=zeros(5,C*M); 
  
for d=1:C 
     
    fprintf('\n * Insert the parameters for Class %d\n ',d) 
  
  Distributions_1= Distributions(1:M,d); 
   
   
  for g=1:M 
       
      fprintf('\n Characterization of Feature %g\n',g) 
       
      switch (Distributions_1(g)) 
           
          case 1 
       
          Vector_parameters(1,g+M*(d-1))=input('\n Insert sigma:'); 
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          Vector_parameters(2,g+M*(d-1))=input('\n Insert mean:'); 
           
          case 2 
               
              Vector_parameters(3,g+M*(d-1))=input('\n Insert sigma:'); 
               
          case 3 
               
              Vector_parameters(4,g+M*(d-1))=input ('\n Insert the start 
interval:'); 
               
              Vector_parameters(5,g+M*(d-1))=input('\n Insert the end 
interval:'); 
      end 
       
  end 
   
end 
  
Parameters=Vector_parameters; 
  
Feature_matrix=zeros(N,C*M); 
  
  
  
%Calculating the Feauture's Histogram 
  
for t=1:C 
     
    Distributions_1= Distributions(1:M,t); 
  
     
    for y=1:M 
         
        switch (Distributions_1(y)) 
           
          case 1 
               
              Sigma=Parameters(1,y+M*(t-1)); 
  
              Mean=Parameters(2,y+M*(t-1)); 
  
              Feature_matrix(1:N,y+M*(t-1))= randn(1,N)*Sigma +Mean; 
               
               
            case 2 
                 
                Uniform_Distribution=rand(1,N); 
  
                Sigma=Parameters(3,y+M*(t-1)); 
  
                    for i=1:N 
  
                        Feature_matrix(i,y+M*(t-1))= Sigma*sqrt(-2*log(1-
Uniform_Distribution(i))); 
     
                    end 
            case 3 
                 
                a=Parameters(4,y+M*(t-1)); 
  
                b=Parameters(5,y+M*(t-1)); 
  
  
                        Feature_matrix(1:N,y+M*(t-1))= a + (b-a).* 
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rand(N,1); 
        end 
         
    end 
     
end 
  
  
X1=Feature_matrix; % Training Matrix 
  
  
  
% Plotting Histograms 
  
  
    for l=1:C 
  
     
        figure(l) 
       
         
  
         for z=1:M 
     
             subplot(M,1,z),hist(Feature_matrix(1:N,z+M*(l-1)),100) 
              
             title(['Characterization of Class',int2str(l) '. 
Feature',int2str(z) ' Histrogram']) 
              
             xlabel(['Feature ',int2str(z)]); 
              
             ylabel('Occurrence'); 
        
     
         end 
          
          
     
    hold on 
     
    end 
     
    
     
    % Folder Name's Construction 
     
    FolderName=cbuild(C,M); 
  
    mkdir( FolderName); 
  
    
  
    % Plotting the M-dimensional Space 
     
     
    
     
    ColorSet=[0 0 1 ; 1 0 0 ; 0 1 0 ; 0 1 1 ; 1 0 1 ;0 0 0;1 1 0]; 
     
    controlC=C-1; 
     
     
          switch(M) 
               
              case 1 
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                        figure(C+1) 
               
                       for f=1:M:M*C 
               
                            
p1=plot(X1(1:N,f),zeros(1,N),'+','Color',ColorSet(1+((f-1)/M),:)); 
                             
                            hold on 
                 
                       end 
               
                        hold on 
               
                       title('Features Space') 
                        
                        
               
                        switch(controlC) 
                   
                            case 1 
               
                            legend('Class 1','Class 2',2); 
                         
                            case 2 
                       
                            legend('Class 1','Class 2','Class 3',3); 
                         
                            case 3 
                       
                            legend('Class 1','Class 2','Class 3','Class 
4',4); 
                         
                            case 4 
                       
                            legend('Class 1','Class 2','Class 3','Class 
4','Class 5',5); 
                       
                            case 5 
                       
                            legend('Class 1','Class 2','Class 3','Class 
4','Class 5','Class 6',6); 
                       
                            case 6 
                       
                            legend('Class 1','Class 2','Class 3','Class 
4','Class 5','Class 6','Class 7',7); 
                       
                        end 
                          
               
                        xlabel('Feature') 
                         
                        ylim([-0.05 0.05]) 
               
                        grid on 
                         
                        cd (FolderName); 
                         
                        hgsave('1Feature') 
                         
                        cd .. 
           
  
         
              case 2 
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                            figure(C+1) 
                             
                            
                            for f=1:M:M*C 
               
                                
p2=plot(X1(1:N,f),X1(1:N,f+1),'+','Color',ColorSet(1+((f-1)/M),:)); 
                                 
                                hold on 
                 
                            end 
               
                            hold on 
               
                            title('Features Space') 
               
                        switch(controlC) 
                   
                            case 1 
               
                            legend('Class 1','Class 2',2); 
                         
                            case 2 
                       
                            legend('Class 1','Class 2','Class 3',3); 
                         
                            case 3 
                       
                            legend('Class 1','Class 2','Class 3','Class 
4',4); 
                         
                            case 4 
                       
                            legend('Class 1','Class 2','Class 3','Class 
4','Class 5',5); 
                       
                            case 5 
                       
                            legend('Class 1','Class 2','Class 3','Class 
4','Class 5','Class 6',6); 
                       
                            case 6 
                       
                            legend('Class 1','Class 2','Class 3','Class 
4','Class 5','Class 6','Class 7',7); 
                       
                        end 
                          
               
                        xlabel('Feature 1') 
                         
                        ylabel('Feature 2') 
               
                        grid on 
                         
                        cd(FolderName) 
                         
                        hgsave('2Features') 
                         
                        cd .. 
                         
              case 3 
                   
                                figure(C+1) 
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                            for f=1:M:M*C 
               
                                
p3=plot3(X1(1:N,f),X1(1:N,f+1),X1(1:N,f+2),'+','Color',ColorSet(1+((f-
1)/M),:)); 
                                 
                                hold on 
                 
                            end 
               
                            hold on 
               
                            title('Features Space') 
               
                        switch(controlC) 
                   
                            case 1 
               
                            legend('Class 1','Class 2',2); 
                         
                            case 2 
                       
                            legend('Class 1','Class 2','Class 3',3); 
                         
                            case 3 
                       
                            legend('Class 1','Class 2','Class 3','Class 
4',4); 
                         
                            case 4 
                       
                            legend('Class 1','Class 2','Class 3','Class 
4','Class 5',5); 
                       
                            case 5 
                       
                            legend('Class 1','Class 2','Class 3','Class 
4','Class 5','Class 6',6); 
                       
                            case 6 
                       
                            legend('Class 1','Class 2','Class 3','Class 
4','Class 5','Class 6','Class 7',7); 
                       
                        end 
                          
               
                        xlabel('Feature 1') 
                         
                        ylabel('Feature 2') 
                         
                        zlabel('Feature 3') 
               
                        grid on 
                         
                        cd(FolderName) 
                         
                        hgsave('3Features') 
                         
                        cd .. 
                         
          end 
                   
                
     
   % Generation matrix of Training (M,N*C) dimension 



  

Carmen J. Martin Martin – SAPIENZA Università di Roma 

128 

    
     
    D=N*C;% Total Number of Training 
     
    
    Xp=zeros(M,N); %Training Matrix 
     
    X_convertion= (X1)'; 
     
    Xq=zeros(M,N*C); 
     
    X=zeros(1:M,N*C); 
     
     
    
    
     
    for k=1:C 
    
         Xp(1:M,1:N)= X_convertion(1+M*(k-1):(k*M),1:N); 
          
         Xq=[Xq Xp]; 
          
         Xp=zeros(M,N); 
          
    end 
     
  X=Xq(1:M,(N*C)+1:2*(N*C)); 
     
  % Axis Construction 
   
  max_values=max(X,[],2); 
   
  min_values=min(X,[],2); 
     
     
     
  % Vector of Desired Response Generation  
        
       if (C==2) 
        
        y_ort=[ones(1,N) (ones(1,N)*(-1))]; 
         
       else 
            
        y_ort=[ones(1,N) zeros(1,N*(C-1))]; 
         
       end 
   
        
  % Feature Vector to be classified 
         
        if (C==2) 
     
    fprintf('\n Insert the feacture vector to be classified. \n ') 
     
             
     
               if (M==1) 
                    
                    yax=linspace(-0.05,0.05,10); 
                     
                    xsample_1=input('Insert the Feature:'); 
                     
                    xsample=[1;xsample_1]; 
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                    figure(C+1) 
                     
                    plot(xsample_1,0,'go'); 
                     
                    % Calculating Vector of Weights 
                     
                    W1=Pocket(X,y_ort,M,N,C); 
                     
                    w_ini=(rand(1,M+1))' ;% Initialization Vector 
  
                    W2 =perce(X,y_ort,M,N,C,w_ini); 
                     
                    W3= LMS(X,M,N,C,W2,y_ort ); 
             
                    W4=SOE(X,M,N,C) ; 
                     
                    w01=W1(1); 
                     
                    w11=W1(2); 
                     
                    w02=W2(1); 
                     
                    w12=W2(2); 
                     
                    w03=W3(1); 
                     
                    w13=W3(2); 
                     
                    w04=W4(1); 
                     
                    w14=W4(2); 
             
                    % With Pocket 
                     
                    cd(FolderName) 
                     
                    hgload('1Feature') 
                     
                    hold on 
                     
                    figure(C+2) 
                     
                    plot(xsample_1,0,'go'); 
                     
                    hold on 
                     
                    plot((-w01/w11)*ones(1,10),yax,'-.k*') 
                     
                    hold on 
                     
                    title('Discriminant Function with Pocket Algorithm'); 
                     
                    hgsave('WithPocket') 
                     
                    cd .. 
                     
                    % With Perceptron 
                     
                    cd(FolderName) 
                     
                    hgload('1Feature') 
                     
                    hold on 
                     
                     
                    figure(C+3) 
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                    plot(xsample_1,0,'go'); 
                     
                    hold on 
                     
                    plot((-w02/w12)*ones(1,10),yax,'-.k*') 
                     
                    hold on 
                     
                    title('Discriminant Function with Perceptron 
Algorithm'); 
                     
                    hgsave('WithPercpetron') 
                     
                    cd .. 
                     
                    %With LMS 
                     
                    cd(FolderName) 
                     
                    hgload('1Feature') 
                     
                    hold on 
                     
                    figure(C+4) 
                     
                    plot(xsample_1,0,'go'); 
                     
                    hold on 
%                      
                    plot((-w03/w13)*ones(1,10),yax,'-.k*') 
                     
                    hold on 
                     
                    title('Discriminant Function with LMS Algorithm'); 
                     
                    hgsave('WithLMS') 
                     
                    cd .. 
                     
                    %With SOE 
                     
                    cd(FolderName) 
                     
                    hgload('1Feature') 
                     
                    hold on 
                    
                     
                    figure(C+5) 
                    
                    plot(xsample_1,0,'go'); 
                     
                    hold on 
                     
                     
                    plot((-w04/w14)*ones(1,10),yax,'-.k*') 
                     
                    hold on 
                     
                    title('Discriminant Function with SOE Algorithm'); 
                     
                    hgsave('WithSOE') 
                     
                    cd .. 
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               elseif(M==2) 
  
       
                xsample_1= input('Insert Feature 1:'); 
       
                xsample_2= input('Insert Feature 2:'); 
       
                xsample=[1 ;xsample_1; xsample_2]; 
       
                figure(C+1) 
                 
                plot(xsample(2),xsample(3),'go'); 
                 
                hold on 
                 
                xax= linspace((min_values(1))-0.5,max_values(1)+0.5,1000); 
                 
                 
                 
         % Calculating Vector of Weights 
                
    
            % With Pocket      
           
                W1=Pocket(X,y_ort,M,N,C); 
                 
                w01=W1(1); 
          
                w11=W1(2); 
          
                w21=W1(3); 
          
                y1= -(w01+(w11*xax))/w21; 
                
                cd(FolderName); 
                 
                 
                hgload('2Features'); 
                 
                hold on; 
                 
                figure(C+2) 
               
                plot(xax,y1,':k','LineWidth',2); 
                 
                hold on; 
                 
                figure(C+2) 
                 
                plot(xsample(2),xsample(3),'go'); 
                 
                title('Discriminant Function with Pocket Algorithm'); 
                 
                %axis([ (min_values(1)-2) (max_values(1)+2)  (min_values(2)-
2) (max_values(2)+2)]) 
                 
                hold on; 
                 
                hgsave('WithPocket'); 
                 
                cd .. 
                 
                 
            %With Perceptron 
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                w_ini=(ones(1,M+1))' ;% Initialization Vector 
  
                W2 =perce(X,y_ort,M,N,C,w_ini); 
          
                w02=W2(1); 
          
                w12=W2(2); 
          
                w22=W2(3); 
                
                y2= -(w02+(w12*xax))/w22; 
               
                cd(FolderName); 
                 
                hgload('2Features'); 
                 
                figure(C+3) 
                
                plot(xax,y2,':k','LineWidth',2); 
                 
                hold on; 
                 
                plot(xsample(2),xsample(3),'go'); 
                 
                hold on; 
                 
                title('Discriminant Function with Perceptron Algorithm'); 
                 
                hold on; 
                 
                hgsave('WithPerceptron'); 
                 
                cd .. 
                 
                 
                 
                %With LMS 
       
                W3= LMS(X,M,N,C,W1,y_ort ); 
                 
                w03=W3(1); 
          
                w13=W3(2); 
          
                w23=W3(3); 
          
                y3= -(w03+(w13*xax))/w23; 
                 
                cd(FolderName); 
                 
                hgload('2Features'); 
                 
                figure(C+4) 
                 
                plot(xax,y3,':k','LineWidth',2); 
                 
                hold on; 
                 
                plot(xsample(2),xsample(3),'go'); 
                 
                hold on; 
                 
                title('Discriminant Function with LMS Algorithm'); 
                 
                hold on; 
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                hgsave('With LMS'); 
                 
                cd .. 
                 
                 
             
       
            %With SOE 
       
                W4=SOE(X,M,N,C) ; 
                 
                w04=W4(1); 
          
                w14=W4(2); 
          
                w24=W4(3); 
          
                y4= -(w04+(w14*xax))/w24; 
                 
                cd(FolderName); 
                 
                hgload('2Features'); 
                 
                figure(C+5) 
                 
                plot(xax,y4,':k','LineWidth',2); 
                 
                hold on; 
                 
                plot(xsample(2),xsample(3),'go'); 
                 
                hold on; 
                 
                title('Discriminant Function with SOE Algorithm'); 
                 
                hold on ; 
                 
                hgsave('WithSOE'); 
                 
                cd .. 
                 
                 
           
           
               elseif(M==3) 
             
       
                xsample_1= input('Insert Feature 1:') 
       
                xsample_2= input('Insert Feature 2:') 
           
                xsample_3=input('Insert Feature 3:') 
       
                xsample=[1 ;xsample_1; xsample_2; xsample_3]; 
       
                plot3(xsample(2),xsample(3),xsample(4),'go'); 
                  
                hold on; 
                 
                xaxis= linspace((min_values(1))-0.5,max_values(1)+0.5,100); 
          
                yaxis= linspace(min_values(2)-0.5,max_values(2)+0.5,100); 
                 
                 % With Pocket      
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                W1=Pocket(X,y_ort,M,N,C); 
                 
                w01=W1(1); 
          
                w11=W1(2); 
          
                w21=W1(3); 
                 
                w31=W1(4); 
                 
                z1=zeros(100,100); 
                 
                for t=1:100 
                     
                    for u=1:100 
                         
                        z1(t,u)=(-1)*(w01+w11*xaxis(u)+w21*yaxis(t))/w31; 
                         
                    end 
                     
                end 
                 
                cd(FolderName); 
                 
                hgload('3Features'); 
                 
                hold on 
                 
                figure(C+2) 
                 
                plot3(xsample(2),xsample(3),xsample(4),'go'); 
                 
                hold on; 
                 
                mesh(xaxis,yaxis,z1); 
                 
                hold on; 
                 
                title('Discriminant Function with Pocket Algorithm'); 
                 
                hgsave('WithPocket'); 
                 
                cd .. 
             
                %With Percetron 
  
                w_ini=(rand(1,M+1))' ;% Initialization Vector 
  
                W2 =perce(X,y_ort,M,N,C,w_ini); 
          
                w02=W2(1); 
          
                w12=W2(2); 
          
                w22=W2(3); 
                 
                w32=W2(4); 
        
                z2=zeros(100,100); 
                 
                for t=1:100 
                     
                    for u=1:100 
                         
                        z2(t,u)=(-1)*(w02+w12*xaxis(u)+w22*yaxis(t))/w32; 
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                    end 
                     
                end 
                 
                cd(FolderName); 
                 
                hgload('3Features') 
                 
                hold on; 
                 
                figure(C+3) 
                  
                plot3(xsample(2),xsample(3),xsample(4),'go'); 
                 
                hold on; 
          
                mesh(xaxis,yaxis,z2); 
                 
                hold on; 
                 
                title('Discriminant Function with Perceptron Algorithm') 
                 
                hgsave('WithPerceptron'); 
                 
                cd .. 
             
                 
                %With LMS 
       
                W3= LMS(X,M,N,C,W2,y_ort ); 
                 
                w03=W3(1); 
          
                w13=W3(2); 
          
                w23=W3(3); 
                 
                w33=W3(4); 
                 
                z3=zeros(100,100); 
                 
                for t=1:100 
                     
                    for u=1:100 
                         
                        z3(t,u)=(-1)*(w03+w13*xaxis(u)+w23*yaxis(t))/w33; 
                         
                    end 
                     
                end 
                 
                cd(FolderName); 
                 
                hgload('3Features'); 
                 
                hold on; 
                 
                figure(C+4) 
                 
                plot3(xsample(2),xsample(3),xsample(4),'go'); 
                 
                hold on; 
                 
                mesh(xaxis,yaxis,z3); 
                 
                hold on; 
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                title('Discriminant Function with LMS Algorithm') 
                 
                hgsave('WithLMS') 
                 
                cd .. 
             
       
            %With SOE 
       
                W4=SOE(X,M,N,C) ; 
                 
                w04=W4(1); 
          
                w14=W4(2); 
          
                w24=W4(3); 
                 
                w34=W4(4); 
                 
                z4=zeros(100,100); 
                 
                for t=1:100 
                     
                    for u=1:100 
                         
                        z4(t,u)=(-1)*(w04+w14*xaxis(u)+w24*yaxis(t))/w34; 
                         
                    end 
                     
                end 
                 
                cd(FolderName); 
                 
                hgload('3Features'); 
                 
                hold on; 
                 
                figure(C+5) 
                 
                plot3(xsample(2),xsample(3),xsample(4),'go'); 
          
                hold on; 
                 
                mesh(xaxis,yaxis,z4); 
                 
                hold on; 
                 
                title('Discriminant Function with SOE Algorithm') 
                 
                hgsave('WithSOE') 
                 
                cd .. 
             
           
        else 
             
            xsample1= input('Insert the Vector = ') 
             
            xsample=[1;xsample1(1:M,1)]; 
             
            W1=Pocket(X,y_ort,M,N,C); 
             
            w_ini=(rand(1,M+1))' ;% Initialization Vector 
  
            W2 =perce(X,y_ort,M,N,C,w_ini); 
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            W3= LMS(X,M,N,C,W2,y_ort ); 
             
            W4=SOE(X,M,N,C) ; 
             
             
              
        end 
       
      
            % Discrimination Stage for 2_Class case 
             
             
            Threshold1=W1'*xsample; 
             
             
                  
                 if Threshold1<0 
                      
                     
                        fprintf('\n Second Pocket Algorithm the Vector takes 
part of the  Class 2  \n'); 
                         
                 else 
                          
                         fprintf('\n Second Pocket Algorithm the Vector 
takes part of the  Class 1 \n'); 
                          
                 end 
                      
                 
            Threshold2=W2'*xsample; 
             
            
                 if Threshold2<0 
                      
                     
                        fprintf('\n Second Pocket Algorithm the Vector takes 
part of the  Class 2  \n'); 
                         
                 else 
                          
                         fprintf('\n Second Pocket Algorithm the Vector 
takes part of the  Class 1 \n'); 
                          
                 end 
                 
            Threshold3=W3'*xsample; 
             
        
              if Threshold3<0 
                      
                     
                        fprintf('\n Second Perceptron Algorithm the Vector 
takes part of the  Class 2  \n'); 
                         
                 else 
                          
                         fprintf('\n Second Perceptron Algorithm the Vector 
takes part of the  Class 1 \n'); 
                          
                 end 
                  
                 
            Threshold4=W4'*xsample; 
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                 if Threshold4<0 
                      
                     
                        fprintf('\n Second LMS Algorithm the Vector takes 
part of the  Class 2  \n'); 
                         
                 else 
                          
                         fprintf('\n Second LMS Algorithm the Vector takes 
part of the  Class 1 \n'); 
                          
                 end 
                  
                 
             
             
            % C_Class Classifier (C>2) 
             
        else 
             
            xax= linspace((min_values(1))-0.5,max_values(1)+0.5,100); 
             
             
             
             
            fprintf('\n Insert the feacture vector to be classified. \n ') 
             
             if (M==1) 
                  
                    xsample_1=input('Insert the Feature:'); 
                     
                    xsample=[xsample_1;1]; 
                     
                    plot(xsample_1,0,'ko'); 
                  
                    hold on 
                  
                  
             elseif(M==2) 
                  
                 
       
                xsample_1= input('Insert Feature 1:') 
       
                xsample_2= input('Insert Feature 2:') 
       
                xsample=[xsample_1; xsample_2;1]; 
       
                plot(xsample(1),xsample(2),'ko') 
                 
             elseif(M==3) 
                  
                yax= linspace((min_values(2))-0.5,max_values(2)+0.5,1000); 
                  
                xsample_1= input('Insert Feature 1:') 
       
                xsample_2= input('Insert Feature 2:') 
           
                xsample_3=input('Insert Feature 3:') 
       
                xsample=[xsample_1; xsample_2; xsample_3;1]; 
       
                plot3(xsample(1),xsample(2),xsample(3),'ko') 
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                else 
             
            xsample1= input('Insert the  Vector = ') 
             
            xsample=[xsample1(1:M,1);1]; 
             
            
             
              
        end 
                 
             
        
            Matrix_Kesler=Kesler_Construc(X,M,N,C); 
             
            w1_Cclass=perceMultiClass(Matrix_Kesler); 
             
            fprintf('\n Second Perceptron Algorithm :\n') 
             
            discriminant_Cclass(xsample,C,M,w1_Cclass); 
             
            w2_Cclass= PocketMultiClass(Matrix_Kesler); 
             
            fprintf('\n Second Pocket Algorithm :\n') 
             
            discriminant_Cclass(xsample,C,M,w2_Cclass); 
             
             
            %--------------------------------------- 
             
            matrix_weightLMS=zeros(M+1,C); 
             
             
            w_ini=(rand(1,M+1))' ;% Initialization Vector 
             
             
             
             
            for o=1:C 
                 
                matrix_weightLMS(1:M+1,o)=LMSMultiClass(X,M,N,C,w_ini,o ); 
                 
           end 
             
           
            
         
            %Discrimant Block 
             
            ThersholdLMSMultiClass=zeros(1,C); 
             
            for g=1:C 
                 
                ThersholdLMSMultiClass(g)= 
(matrix_weightLMS(1:M+1,g))'*xsample; 
                 
            end 
             
            
ClassLMS=find(ThersholdLMSMultiClass==max(ThersholdLMSMultiClass)); 
             
            fprintf('\n Second LMS Algorithm the vector takes part of the 
Class %d \n',ClassLMS) 
             
            %-------------------------------------------------------------- 
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            matrix_weightSOE=zeros(M+1,C); 
            
            
            for r=1:C 
                 
                 
                 
                matrix_weightSOE(1:M+1,r)= SOEMultiClass(X,M,N,C,r) ; 
                 
                 
             
            end 
             
      
         
            %Discrimant Block 
             
            ThersholdSOEMultiClass=zeros(1,C); 
             
            for u=1:C 
                 
                ThersholdSOEMultiClass(u)= 
(matrix_weightSOE(1:M+1,u))'*xsample; 
                 
            end 
             
            
ClassSOE=find(ThersholdSOEMultiClass==max(ThersholdSOEMultiClass)); 
             
            fprintf('\n Second SOE Algorithm the vector takes part of the 
Class %d \n',ClassSOE) 
             
     end 
 
             
2.cbuild 
 
 
% This function creates a variable folder name 
 
function FolderName=cbuild(C,M)   
 
FolderName=''; 
 
FolderName=[FolderName num2str(C) 'Classes' '_' num2str(M) 'Features' '_' 
date '_' num2str(cputime)]; 
 
 
3.Perceptron 
 
% Perceptrom Algorithm 
 
function w =perce(X,y,M,N,C,w_ini) 
 
Ntotal=N*C; 
 
Xper=[ones(1,Ntotal); X(1:M,1:Ntotal)]; 
 
 
[m,Ntotal]=size(Xper); 
 
yper=y; 
 
max_iter=100000; % Maximum allowable number of iterations 
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rho=1; % Learning rate  
 
w=w_ini; % Initialization of the parameter vector 
 
iter=0; % Iteration counter 
 
mis_clas=Ntotal; % Number of misclassified vectors 
 
while(mis_clas>0)&&(iter<max_iter) 
     
     
    iter=iter+1; 
     
    mis_clas=0; 
     
    gradi=zeros(M+1,1) ;% Inizialitation of the gradient term 
     
    for i=1:Ntotal 
         
        if((Xper(:,i)'*w)*yper(i)<0) % Verification Perceptron cost 
             
            mis_clas=mis_clas+1; 
             
            gradi=gradi-(yper(i)*Xper(:,i)); % Computation of the gradient 
term 
        end 
         
    end 
     
    w=w-(1/iter)*gradi; %Updating the parameter vector 
end 
 
fprintf('\n Iteration Number with Perceptron %d \n',iter); 
             
             
             
                 
4.Pocket  
 
% Pocket Algorithm with Ratchet 
 
function W= Pocket(X,y,M,N,C) 
 
%X=[] Training Feature Vectors Matrix 
 
%y=[] Vector of desired responses 
 
%W=[] Vector of integral pocket weights 
 
%pi=[] Vector of integral perceptron weights 
 
%run_pi= number of consecutive correct classifications using perceptron 
weights pi 
 
%run_w= number of consecutive correct classifications using pockets weights 
W 
 
%num_okpi= total number of training examples that pi correctly classifies. 
 
%num_okw= total number of training examples that W correctly classifies. 
 
Ntotal=N*C; 
 
Xpocket=[ones(1,Ntotal); X(1:M,1:Ntotal)]; 
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[m,Ntotal]=size(Xpocket); 
 
 
pi=(zeros(1,m))'; 
 
run_pi=0; 
 
run_w=0; 
 
num_okpi=0; 
 
num_okw=0; 
 
num_Iteration=100000; 
 
Iteration_counter=1; 
 
index= ceil(Ntotal*rand(1,1)) ;% Randomly pick a training example 
 
x_sample= Xpocket(1:m,index); 
 
y_sample= y(index); 
 
 
 
      
        while ((Iteration_counter<num_Iteration) && (num_okw<Ntotal)) 
             
                  
                  
 
                f_sample=pi'*x_sample; 
 
                    if (((f_sample >0) && (y_sample ==1)) || ((f_sample <0) 
&& (y_sample ==-1))) 
                             
                           
                       
                            run_pi=run_pi+1; 
          
                                if (run_pi>run_w) 
                 
                            %Compute num_okpi by checking every training 
example 
                 
                             for i=1:Ntotal 
                    
                               f_sample_vector(i)=pi'*Xpocket(1:m,i); 
                     
                             end 
 
                             thershold=f_sample_vector.*y; 
                     
                             correctly_index=find(thershold>0); 
                     
                             num_okpi=length(correctly_index); 
                     
                                if (num_okpi>num_okw) 
                         
                                    W=pi; 
                          
                                    run_w=run_pi; 
                          
                                    num_okw=num_okpi; 
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                                        if (num_okw==Ntotal) 
                              
                                        break 
                           
                                         
                                        end 
                                         
                                end 
                                 
                                end 
                                 
                         index= ceil(Ntotal*rand(1,1)); % Randomly pick a 
training example 
 
                        x_sample= Xpocket(1:m,index); 
 
                        y_sample= y(index); 
 
                        f_sample=pi'*x_sample; 
                  
                          
                              
                                 
                        
                         
                        
                              
                    else 
                       
                             
                      
                            pi=pi+y_sample*x_sample; 
                             
                            run_w=0; 
                  
                            run_pi=0; 
                  
                  
 
                  
                  
                  
                        end 
             
            Iteration_counter=Iteration_counter+1; 
      
        end 
     
        fprintf('\n Iteration Number with Pocket: %d \n',Iteration_counter); 
                             
                              
                        

5.LMS 

% LMS Algorithm 
 
function w= LMS(X,M,N,C,W2,y ) 
 
Ntotal=N*C; 
 
XLMS=[ones(1,Ntotal); X(1:M,1:Ntotal)]; 
 
% y=zeros(1,Ntotal); 
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%  
% for t=1:Ntotal 
%      
%     y(t)=W2'*XLMS(1:(M+1),t); 
%      
% end 
 
 
[m,Ntotal]=size(XLMS); 
 
 
w=W2; 
 
 
rhoK= 4e-10; % Learning rate 
 
for i=1:Ntotal 
     
    w= w+((rhoK)*(y(i)-(XLMS(1:m,i))'*w)*XLMS(1:m,i)); 
end 
 

6.SOE 

 

%Sum of Error Squares Estimation 
 
 
 
 
function w= SOE(X,M,N,C)  
 
% Ntotal=N*C; 
%  
% XSOE=[ones(1,Ntotal); X(1:M,1:Ntotal)]; 
%  
%  
% [m,Ntotal]=size(XSOE); 
%  
% y=zeros(1,Ntotal)'; 
%  
% for t=1:Ntotal 
%      
%     y(t)=W2'*XSOE(1:(M+1),t); 
%      
% end 
%  
% W=(zeros(1,m))'; 
%  
%  
%  
% %Compute the weights vector 
%  
%  
%      W= inv(XSOE*XSOE')*(XSOE*y); 
%       
 
Ntotal=N*C; 
 
XSOEinitial=[ones(1,Ntotal); X(1:M,1:Ntotal)]; 
 
Y1=XSOEinitial'; 
 
Y=[Y1(1:N,1:M+1);(-1)*Y1(N+1:2*N,1:M+1)]; 
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w=ones(1,M+1)'; 
 
y=ones(Ntotal,1); 
 
rho=0.9; 
 
% bmin=0.01; 
 
MaxIteration=1500000; 
 
 
 
for k=1:MaxIteration 
     
    error=(Y*w)-y; 
     
    errorpositive=(error+abs(error))/2; 
     
    y=y+2*(rho)*errorpositive; 
     
    w=(inv(Y'*Y)*Y')*y; 
     
    if(Y*w >0) 
         
        break; 
         
    end 
     
end 
 
 
    fprintf('K=,%d',k); 
%      
%     x=linspace(1,100,1000); 
%      
%     w1=w(1); 
%      
%     w2=w(2); 
%      
%     w3=w(3); 
%      
%     ynuevo =zeros(1,1000); 
%      
%     ynuevo =(-1)*((w2*x)+w1)/w3; 
%      
%     plot(x,ynuevo) 
%     hold on; 
%     grid on; 
%      
%     axis([1 50 0 20]); 

% 

7.Kesler  

% M Class Case Classification 
 
function Matrix_Kesler=Kesler_Construc(X,M,N,C) 
 
 
 
 
Ntotal=N*C; 
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X1= [X(1:M,1:Ntotal); ones(1,Ntotal)]; 
 
[m,Ntotal]=size(X1); 
 
Xtraining_extension=zeros(m*C,C*N); 
 
Xtotale=zeros(m*C,C*N); 
 
for i=1:C 
     
    for p=1:N 
 
        for j=1:C 
             
            if (i==j) 
             
             
            Xtraining_extension(1:m*C,(N*C*(i-1))+(j+C*(p-1)))= 
zeros(1:m*C,1); 
     
             
            else 
             
             Xtraining_extension(((i-1)*m)+1:((i-1)*m)+m,(N*C*(i-
1))+(j+C*(p-1)))= X1(1:m,p+N*(i-1)); 
     
            Xtraining_extension(((j-1)*m)+1:((j-1)*m)+m,(N*C*(i-1))+(j+C*(p-
1)))= (-1)*X1(1:m,p+N*(i-1)); 
             
            end 
     
     
        end 
         
    end 
     
    %Xtotale (1:m*C,1+N*C*(i-1):N*C*(i-
1)+(N*C))=Xtraining_extension(1:m*C,1:C*N) 
end 
 
f=Xtraining_extension; 
 
[a,b]=size(f); 
 
index=any(f); 
 
index_def=zeros(1,length(index)); 
 
for i=1:length(index) 
     
    if(index(i)==1) 
         
        index_def(i)=i; 
         
    end 
     
end 
 
t=0; 
 
vect_f=zeros(1,Ntotal*(C-1)); 
 
x=length(vect_f); 
 
for j=1:length(index_def) 
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    if(index_def(j)~=0) 
         
        t=t+1; 
         
        vect_f(t)=index_def(j); 
         
    end 
     
end 
 
%Final Kesler Construction 
 
Matrix_Kesler= zeros(a,x); 
 
for k=1:x 
     
    Matrix_Kesler(1:a,k)=(f(1:a,vect_f(k))); 
     
end  
 
8.Perceptron multic lass  
 
% Perceptron Algorithm for Multiclass Case 
 
function w=perceMultiClass(Matrix_Kesler) 
 
[o,p]=size(Matrix_Kesler); 
 
y=ones(1,p); 
 
yper=y; 
 
max_iter=100000; % Maximum allowable number of iterations 
  
rho=1; % Learning rate  
 
 
% Initialization of the parameter vector 
 
 
 
w=(zeros(1,o))'; 
 
for h=1:o 
 
    w(h)= rand(1,1); 
     
end 
 
iter=0; % Iteration counter 
 
mis_clas=p; % Number of misclassified vectors 
 
while(mis_clas>0)&&(iter<max_iter) 
     
    iter=iter+1; 
     
    mis_clas=0; 
     
    gradi=zeros(o,1) ;% Inizialitation of the gradient term 
     
    for i=1:p 
         
        if((w'*Matrix_Kesler(:,i))*yper(i)<0) % Verification Perceptron cost 
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            mis_clas=mis_clas+1; 
             
            gradi=gradi-(yper(i)*Matrix_Kesler(:,i)); % Computation of the 
gradient term 
        end 
         
    end 
     
    w=w-(rho/iter)*gradi; %Updating the parameter vector 
end 
 
fprintf('Iteration Counter %d',iter); 
 
9.  Pocket  Multi -Class  
 
% Pocket Algorithm with Ratchet for Multi-Class Case 
 
function W= PocketMultiClass(Matrix_Kesler) 
 
% Pocket Algorithm with Ratchet 
 
 
 
%X=[] Training Feature Vectors Matrix 
 
%y=[] Vector of desired responses 
 
%W=[] Vector of integral pocket weights 
 
%pi=[] Vector of integral perceptron weights 
 
%run_pi= number of consecutive correct classifications using perceptron 
weights pi 
 
%run_w= number of consecutive correct classifications using pockets weights 
W 
 
%num_okpi= total number of training examples that pi correctly classifies. 
 
%num_okw= total number of training examples that W correctly classifies. 
 
Xpocket=Matrix_Kesler; 
 
[u,v]=size(Xpocket); 
 
y=(ones(1,v)); 
 
pi=(zeros(1,u))'; 
 
run_pi=0; 
 
run_w=0; 
 
num_okpi=0; 
 
num_okw=0; 
 
num_Iteration=100000; 
 
Iteration_counter=1; 
 
index= ceil(v*rand(1,1)) ;% Randomly pick a training example 
 
x_sample= Xpocket(1:u,index); 
 



  

Carmen J. Martin Martin – SAPIENZA Università di Roma 

149 

y_sample= y(index); 
 
f_sample_vector= zeros(1,v); 
 
thershold=zeros(1,v); 
 
 
 
      
        while ((Iteration_counter<num_Iteration) && (num_okw<v)) 
 
                f_sample=pi'*x_sample; 
 
                    if (f_sample >0) 
                             
                           
                                run_pi=run_pi+1; 
          
                                if (run_pi>run_w) 
                 
                            %Compute num_okpi by checking every training 
example 
                 
                             for i=1:v 
                    
                               f_sample_vector(i)=pi'*Xpocket(1:u,i); 
                     
                             end 
 
                             thershold=f_sample_vector.*y; 
                     
                             correctly_index=find(thershold>0); 
                     
                             num_okpi=length(correctly_index); 
                     
                                if (num_okpi>num_okw) 
                         
                                    W=pi; 
                          
                                    run_w=run_pi; 
                          
                                    num_okw=num_okpi; 
                          
                                        if (num_okw==v) 
                              
                                        break 
                           
                                         
                                        end 
                                         
                                end 
                                 
                                end 
                                 
                         index= ceil(v*rand(1,1)); % Randomly pick a 
training example 
 
                        x_sample= Xpocket(1:u,index); 
 
                        y_sample= y(index); 
 
                        f_sample=pi'*x_sample; 
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                    else 
                       
                             
                      
                            pi=pi+y_sample*x_sample; 
                             
                            run_w=0; 
                  
                            run_pi=0; 
                  
                  
 
                  
                  
                  
                        end 
             
            Iteration_counter=Iteration_counter+1; 
      
        end 
     
        fprintf('\n Iteration Number with Pocket: %d \n',Iteration_counter); 
                             
                              
                   
 
 
10.LMS Multi -Class  
 
% LMS Algorithm 
 
function w= LMSMultiClass(X,M,N,C,w_ini,o ) 
 
Ntotal=N*C; 
 
 
XLMS=[X(1:M,1:Ntotal);ones(1,Ntotal)]; 
 
 
[m,Ntotal]=size(XLMS); 
 
y=zeros(1,Ntotal); 
 
y(1+N*(o-1):o*N)=ones(1,N); 
 
 
w=w_ini; 
 
 
rhoK= 0.1; % Learning rate 
 
for i=1:Ntotal 
     
    w= w+((rhoK/i)*(y(i)-(XLMS(1:m,i))'*w)*XLMS(1:m,i)); 
end 
 
 

    1 1 .  Discriminant Block 
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function discriminant_Cclass(xsample,C,M,w) 
 
m=M+1; 
 
Xsamplematrix=zeros(m*C,C*C); 
 
[s,t]=size(Xsamplematrix); 
 
for q=1:C 
     
     
   for h=1:C 
        
       if (h==q) 
            
         Xsamplematrix(1:s,(h+C*(q-1)))= zeros(s,1);   
            
            
       else 
        
       Xsamplematrix((q-1)*m+1:((q-1)*m)+m,(h+C*(q-1)))= xsample(1:m,1); 
        
       Xsamplematrix((h-1)*m+1:((h-1)*m)+m,h+C*(q-1))= (-1)*xsample(1:m,1); 
        
       end 
        
        
   end 
    
end 
 
matrixdef=Xsamplematrix; 
 
indexsample=any(Xsamplematrix); 
 
index_defsample=zeros(1,length(indexsample)); 
 
for i=1:length(indexsample) 
     
    if(indexsample(i)==1) 
         
        index_defsample(i)=i; 
         
    end 
     
end 
 
b=0; 
 
vect_fsample=zeros(1,C*(C-1)); 
 
xs=length(vect_fsample); 
 
for u=1:length(index_defsample) 
     
    if(index_defsample(u)~=0) 
         
        b=b+1; 
         
        vect_fsample(b)=index_defsample(u); 
         
    end 
     
end 
 
%Final Kesler Construction 
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Matrix_KeslerSample= zeros(s,xs); 
 
for g=1:xs 
     
    Matrix_KeslerSample(1:s,g)=(Xsamplematrix(1:s,vect_fsample(g))); 
     
end  
 
 
 
 
            %Discrimination 
 
Thershold=zeros(C-1,C); 
 
for v=1:C 
 
   for y=1:C-1 
     
    Thershold(y,v)=w'*Matrix_KeslerSample(1:s,y+(C-1)*(v-1)); 
     
   end 
    
end 
 
min1=min(Thershold); 
 
for wclass=1:C; 
     
    minth=min1(wclass); 
     
     if (minth>0) 
         
        fprintf('\n The vector takes part of the Class %d \n ',wclass) 
         
    end 
     
end 
             
        end 
 
 
 
% Thershold=zeros(1,C) 
%  
% for g=1:C 
%  
%   Thershold(g)=w(1+m*(g-1):g*m,1)'*xsample 
%    
% end 
%  
% index_class=find(Thershold==max(Thershold)) 
 
 
Wifi-Bluetooth Classifier 
 
1.Script 
%Script 
 
close all; 
clear; 
clc; 
C=2; 
M=2; 
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l=1000; 
 
%Bluetooth traffic Generation (Classifier Input) 
 
  %[DurationVector,TSFVector]=MSBluetoothTrafficGenerationsample(l); 
 
  [DurationVector,TSFVector]=SSBluetoothTrafficGenerationsample(l); 
 
 
         
 
%  %Wi-Fi traffic Generation (Classifier Input) 
    
%        filename = 'VAIOHPATHSKYPEUTUBEOPENOFFICEINFOCOM.txt'; 
%          
%        [TSFVector,DurationVector]=import_WiFi(filename) ; 
%  
% % %         
% Mixed Wi-Fi Bluetooth Input 
%[DurationVector,TSFVector]=MixedMSBluetoothWiFi; 
 
%Feature Extraction 
 
[IFSVector,MaxPPDUduration,Interference] = 
FeatureExtraction(DurationVector,TSFVector); 
 
L=length(IFSVector); 
 
 %Folder Name's Construction 
   
 FolderName=cbuild(C,M); 
 
 mkdir( FolderName); 
 
 
%Classification 
[xax,y1,y2,y3,y4,W1,W2,W3,W4]= Classifiers(FolderName); 
 
 
 
 
 
%  
 
% %Multi-Slot 
% W1=[27;-2951.00750966092;214]; 
%  
% W2=[-20.9780909571695;-754754.944960720;65177.3137731307]; 
%  
% W3=[-2.60459375983088e+40;-1.91568366881445e+40;3.80307560277537e+39]; 
%  
% W4=[2885.28906276758;-12.2577405322002;0.213666512014766]; 
 
 
%SingleSlot 
% W1=[-3;-1160.13813388255;614]; 
%  
% W2=[-1124.66666666667;-596979.329122128;393714.500000000]; 
% W3=[-791.939264646996;-412350.058961372;241720.118250060]; 
% W4=[-767.507895440477;-6.77765685180857;6.59157513268478]; 
% %  
 
 
%SingleSlot N=10000 
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% W1=[-11; -1951.51989846758 ; 1254]; 
% W2=[-729.199999999998;-296965.142763335;143747.200000000]; 
% W3=[-11.0557264886324;-1950.94146912034; 1160.08983006525]; 
% W4=[-780.131200548504; -6.91890575158495;6.67045354238516]; 
 
%Multi Slot N=10000 
 
% W1=[114;-7400.15315093904;619]; 
% W2=[438966.699999974;-894011.013611800;52211.6000000255]; 
% W3=[124.716346120036;-3852.40422992936;744.923713217399 ]; 
% W4=[1492.39002650608; -17.9499939253218;1.49834503999549]; 
 
 
%  
%  
%  
%  
% figure (8) 
%  
%                 plot(xax,y1,':k','LineWidth',2); 
%                  
%                 title('Discriminant Function with Pocket Algorithm'); 
%                  
%                 axis([ 1 700 1 5000]); 
%                  
%                 hold on; 
%                
%                  
%                 for a=1:L 
%                      
%                     plot(IFSVector(a),MaxPPDUduration(a),'*m') 
%                      
%                     hold on 
%                      
%                 end 
%                  
%                 grid on 
%                  
%                 xlabel('Duration of Silent Gaps (usec)') 
%                  
%                 ylabel('Max PPDU Duration between two Silent Gaps (usec)') 
%                  
%                 cd(FolderName); 
%                  
%                 hgsave('Sample_Pocket'); 
%                  
%                 cd .. 
%                  
%                  
% figure (9) 
%  
%                 plot(xax,y2,':k','LineWidth',2); 
%                  
%                 title('Discriminant Function with Perceptron Algorithm'); 
%                  
%                 axis([ 1 700 1 5000]); 
%                 
%                 hold on; 
%                  
%                  for b=1:L 
%                      
%                     plot(IFSVector(b),MaxPPDUduration(b),'*m') 
%                      
%                     hold on 
%                      
%                  end 



  

Carmen J. Martin Martin – SAPIENZA Università di Roma 

155 

%                  
%                   grid on 
%                  
%                 xlabel('Duration of Silent Gaps (usec)') 
%                  
%                 ylabel('Max PPDU Duration between two Silent Gaps (usec)') 
%                  
%                 cd(FolderName); 
%                  
%                 hgsave('Sample_Perceptron'); 
%                  
%                 cd .. 
%                  
%                  
%                  
%                  
%                  
% figure (2) 
%  
%                 plot(xax,y3,':k','LineWidth',2); 
%                  
%                 title('Discriminant Function with LMS Algorithm'); 
%                  
%                 axis([ 1 700 1 5000]); 
%                  
%                 xlabel('Inter Frame Space (usec)'); 
%                  
%                 ylabel('Max PPDU Duration (usec)'); 
%                  
%                 hold on; 
%                  
%                  
%                  for c=1:L 
%                      
%  
%  
%                     plot(IFSVector(c),MaxPPDUduration(c),'*m') 
%                      
%                     hold on 
%                      
%                  end 
%                  
%                 grid on 
%                  
%                 xlabel('Duration of Silent Gaps (usec)') 
%                  
%                 ylabel('Max PPDU Duration between two Silent Gaps (usec)') 
%                  
%                 cd(FolderName); 
%                  
%                 hgsave('Sample_LMS'); 
%                  
%                 cd .. 
%                  
%                  
%                  
%                  
% figure (3) 
%  
%                 plot(xax,y4,':k','LineWidth',2); 
%                  
%                 title('Discriminant Function with SOE Algorithm'); 
%                  
%                 xlabel('Inter Frame Space (usec)'); 
%                  
%                 ylabel('Max PPDU Duration (usec)'); 
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%                  
%                 axis([ 1 700 1 5000]); 
%                  
%                 hold on; 
%                  
%                  for d=1:L 
%                      
%                     plot(IFSVector(d),MaxPPDUduration(d),'*m') 
%                      
%                     hold on 
%                      
%                  end 
%                   
%                    grid on 
%                  
%                 xlabel('Duration of Silent Gaps (usec)') 
%                  
%                 ylabel('Max PPDU Duration between two Silent Gaps (usec)') 
%                  
%                 cd(FolderName); 
%                  
%                 hgsave('Sample_SOE'); 
%                  
%                 cd .. 
%  
%  
cd (FolderName) 
 
hgload('2Features') 
 
hold on 
 
 figure(3) 
               
                plot(xax,y1,'r'); 
                 
                 hold on; 
                  
                  plot(xax,y2,'k'); 
                 
                hold on; 
                 
                    plot(xax,y3,'g'); 
                
               hold on; 
                  
                 
                   plot(xax,y4,'m'); 
                 
                hold on; 
                 
                
                hgsave('todo') 
                 
                 cd .. 
                  
%                   
%                  
%                  
                  
                 %Discriminant Block 
                 
                 j 
=DiscriminantBlock(W1,W2,W3,W4,L,IFSVector,MaxPPDUduration) 
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2.cel l2str  
 
function str = cell2str(c) 
% Convert a cell array of strings into an array of strings. 
% CELL2STR pads each string in order to force all strings 
% have the same length. 
% 
 
% Determine the length of each string in cell array c 
nblanks = cellfun(@length, c); 
maxn = max(nblanks); 
nblanks = maxn-nblanks;  
 
% Create a cell array of blanks.  Each column of the cell array contains 
% the number of blanks necessary to pad each row of the converted string 
padding = cellfun(@blanks,num2cell(nblanks), 'UniformOutput', false); 
 
% Concatinate cell array and padding 
str = {c{:}; padding{:}}; 
 
% This operation converts new the cell array into a string 
str = [str{:}]; 
 
% Reshape the string into an array of strings 
ncols = maxn; 
nrows = length(str)/ncols; 

str = reshape(str,ncols,nrows)'; 

 

3.Classif ier  

 

%Classifier Script 
 
function [xax,y1,y2,y3,y4,W1,W2,W3,W4]= Classifiers(FolderName) 
 
 
close all; 
 
C=2; 
 
M=2; 
 
 
 
 
%Wi_Fi Characterization 
 
 
[TSFVectorWIFI,DurationVectorWIFI]=WIFITrainingGeneration; 
 
 
 
[IFSVectorWIFI,MaxPPDUdurationWIFI,InterferenceWIFI]=FeatureExtraction(Durat
ionVectorWIFI,TSFVectorWIFI); 
 
 
% Bluetooth Charaterization 
 
[DurationVectorBluetooth,TSFVectorBluetooth]=SSBluetoothTrafficGeneration; 
 
%[DurationVectorBluetooth,TSFVectorBluetooth]=MSBluetoothTrafficGeneration; 
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[IFSVectorBluetooth,MaxPPDUdurationBluetooth,InterferenceBluetooth]=FeatureE
xtraction(DurationVectorBluetooth,TSFVectorBluetooth); 
  
 
 
%Calculating the Feauture's Histogram 
 
Feature_matrix=zeros(length(IFSVectorWIFI),C*M); 
 
 
     
   
         
         
               
 
              Feature_matrix(1:length(IFSVectorWIFI),1)= IFSVectorWIFI; %IFS 
Wi-Fi 
               
               
              Feature_matrix(1:length(IFSVectorWIFI),2)= 
MaxPPDUdurationWIFI; %Max-Duration Wi-Fi 
               
               
              
Feature_matrix(1:length(IFSVectorWIFI),3)=IFSVectorBluetooth(1:length(IFSVec
torWIFI)) ; % IFS Bluetooth 
               
               
              
Feature_matrix(1:length(IFSVectorWIFI),4)=MaxPPDUdurationBluetooth(1:length(
IFSVectorWIFI)); %Max-Duration Bluetooth 
               
               
              X1=Feature_matrix; 
               
               
  [N,columna]=size(Feature_matrix) % Training Matrix 
   
   %Folder Name's Construction 
     
%     % Plotting Histograms 
%  
%  
%      
%      
%              figure(1) %(Bluetooth) 
%        
%              subplot(2,1,1),hist(Feature_matrix(1:N,3),0:1:625); 
%               
%              title('Characterization of Silence Gaps Duration 
(Bluetooth)'); 
%               
%              grid on; 
%               
%              hold on; 
%               
%              axis([0 700 0 2000]); 
%               
%              subplot(2,1,2),hist(Feature_matrix(1:N,4),0:100:3000); 
%               
%              title('Characterization of Max PPDU Duration between two 
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Silence Gaps  (Bluetooth)'); 
%               
%              grid on; 
%               
%              hold on; 
%               
%              axis([0 4000 0 3000]); 
%               
%              cd(FolderName); 
%               
%              hgsave('BluetoothCharacterization') 
%               
%              cd .. 
%               
 
           
%              figure(2) %(Wi-Fi) 
%               
%              
%              
%              subplot(2,1,1),hist(Feature_matrix(1:N,1),0:1:625); 
%               
%              title('Characterization of Silence Gaps Duration 
(802.11b/g)'); 
%               
%              grid on; 
%               
%              hold on; 
%               
%              axis([0 700 0 2000]); 
%               
%              
subplot(2,1,2),hist(Feature_matrix(1:N,2),0:100:3000,'FaceColor',[0.03922 
0.1412 0.4157]); 
%              
%              grid on; 
%               
%              title('Characterization of Max PPDU Duration between two 
Silence Gaps  (802.11b/g)'); 
%               
%              hold on 
%              
%              axis([0 4000 0 3000]) 
%               
%              cd(FolderName); 
%               
%              hgsave('Wi_FiCharacterization') 
%               
%              cd .. 
%  
%      
    
    
 
%    Plotting the M-dimensional Space 
     
     
    
     
    ColorSet=[1 0 0 ; 0 0 1 ; 0 1 0 ; 0 1 1 ; 1 0 1 ;0 0 0;1 1 0]; 
     
    controlC=C-1; 
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                            figure(1) 
                             
                            
%                             for f=1:M:M*C 
%                
%                                 
p2=plot(X1(1:N,f),X1(1:N,f+1),'+','Color',ColorSet(1+((f-1)/M),:)); 
%                                  
%                                 hold on 
%                  
%                             end 
 
 
%Paper--------------------------------------------------------------------- 
 
                            
p1=plot(X1(1:N,1),X1(1:N,2),'+','Color',ColorSet(1,:)); 
                             
                            hold on 
                      
                            
p2=plot(X1(1:N,3),X1(1:N,4),'o','Color',ColorSet(2,:)); 
                             
                            hold on 
                             
                            %______________________________________________ 
                             
               
                            title('FEATURES  SPACE'); 
               
                            legend('Wi-Fi Training','Bluetooth Training',2); 
                             
                            axis([ 1 700 1 5000]) 
                         
                            xlabel('Duration of Silence Gaps [?sec]') 
                         
                            ylabel('Max Packet Duration between two Silence 
Gaps [?sec]') 
               
                            grid on 
                         
                            cd(FolderName) 
                         
                            hgsave('2Features') 
                         
                        cd .. 
                         
                        figure(2) 
                        Xp= []; 
                        Xp(1:N,1) = X1(1:N,1); 
                        Xp(1:N,2) = X1(1:N,2); 
                        hist3(Xp, {0:5:625 
0:100:3000},'FaceAlpha',.65,'LineStyle','none','FaceColor',[1 0 0]); 
                        title('Data Point Density Histogram and Intensity 
Map'); 
                        grid on  
                        view(3); 
                        xlabel('Duration of Silence Gaps');  
                        ylabel('Max Packet Duration between two Silence 
Gaps'); 
                        zlabel('Ocorrence'); 
                        set(gcf,'renderer','opengl'); 
                        hold on 
                        figure(2) 
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                        Xp= []; 
                        Xp(1:N,1) = X1(1:N,3); 
                        Xp(1:N,2) = X1(1:N,4); 
                        hist3(Xp, {0:5:625 
0:100:3000},'FaceAlpha',.65,'LineStyle','none','FaceColor',[ 0 0 1]); 
                        title('Data Point Density Histogram and Intensity 
Map'); 
                        grid on  
                        view(3); 
                        xlabel('Duration of Silence Gaps');  
                        ylabel('Max Packet Duration between two Silence 
Gaps'); 
                        zlabel('Ocorrence'); 
                        set(gcf,'renderer','opengl'); 
                        hold on 
                         
                         
                         
                         
               
               
                       
                
     
%    %Generation matrix of Training (M,N*C) dimension 
%     
     
    D=N*C;% Total Number of Training 
     
    
    Xp=zeros(M,N); %Training Matrix 
     
    X_convertion= (X1)'; 
     
    Xq=zeros(M,N*C); 
     
    X=zeros(1:M,N*C); 
     
     
    
    
     
    for k=1:C 
    
         Xp(1:M,1:N)= X_convertion(1+M*(k-1):(k*M),1:N); 
          
         Xq=[Xq Xp]; 
          
         Xp=zeros(M,N); 
          
    end 
     
  X=Xq(1:M,(N*C)+1:2*(N*C)); 
%      
% %  Axis Construction 
%    
  max_values=max(X,[],2); 
   
  min_values=min(X,[],2); 
     
     
     
  %Vector of Desired Response Generation  
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        y_ort=[ones(1,N) (ones(1,N)*(-1))]; 
         
        
        xax= linspace(-100,700,1000); 
                 
                 
%                  
%          %Calculating Vector of Weights 
%           
%       
%                 
%     
%             %With Pocket      
           
                W1=Pocket(X,y_ort,M,N,C); 
                 
                w01=W1(1); 
          
                w11=W1(2); 
          
                w21=W1(3); 
          
                y1= -(w01+(w11*xax))/w21; 
                
                cd(FolderName); 
                 
                hgload('2Features'); 
                 
                hold on; 
                 
                figure(C+2) 
               
                plot(xax,y1,':k','LineWidth',2); 
                 
                hold on; 
                 
                %plot(xsample(2),xsample(3),'go'); 
                 
                title('Discriminant Function with Pocket Algorithm'); 
                 
                axis([ 1 700 1 5000]) 
                         
                corte1=-w01/w21; 
                 
                fprintf('Corte %f',corte1) 
                 
                hold on; 
                 
                hgsave('WithPocket'); 
                 
                cd .. 
                 
                 
           % With Perceptron 
 
                w_ini=ones(1,M+1)' ;% Initialization Vector 
 
                W2 =perce(X,y_ort,M,N,C,w_ini); 
          
                w02=W2(1); 
          
                w12=W2(2); 
          
                w22=W2(3); 
                
                y2= -(w02+(w12*xax))/w22; 
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                cd(FolderName); 
                 
                hgload('2Features'); 
                 
                hold on; 
                 
                figure(C+3) 
                
                plot(xax,y2,':k','LineWidth',2); 
                 
                hold on; 
                 
                %plot(xsample(2),xsample(3),'go'); 
                 
                hold on; 
                 
                title('Discriminant Function with Perceptron Algorithm'); 
                 
                axis([ 1 700 1 5000]) 
                         
                corte2=-w02/w22; 
                 
                fprintf('Corte %f',corte2) 
               
                hold on; 
                 
                hgsave('WithPerceptron'); 
                 
                hold on 
                 
                cd .. 
                 
                 
                 
%                 %With LMS 
       
                W3= LMS(X,M,N,C,W1,y_ort); 
                 
                w03=W3(1); 
          
                w13=W3(2); 
          
                w23=W3(3); 
          
                y3= -(w03+(w13*xax))/w23; 
                 
                 cd(FolderName); 
                 
                hgload('2Features'); 
                 
                hold on 
                 
                figure(C+4) 
                 
                plot(xax,y3,':k','LineWidth',2); 
                 
                hold on; 
                 
                %plot(xsample(2),xsample(3),'go'); 
                 
                hold on; 
                 
                title('Discriminant Function with LMS Algorithm'); 
                 
                axis([ 1 700 1 5000]) 
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                corte3=-w03/w23; 
                 
                fprintf('Corte %f',corte3) 
                 
                         
                hold on; 
                 
                hgsave('With LMS'); 
                 
                hold on; 
                 
                cd .. 
                 
                 
%                  
                 %With SOE 
       
                W4=SOE(X,M,N,C) ; 
                 
                w04=W4(1); 
          
                w14=W4(2); 
          
                w24=W4(3); 
          
                y4= -(w04+(w14*xax))/w24; 
                 
                cd(FolderName); 
                 
                hgload('2Features'); 
                 
                figure(C+5) 
                 
                plot(xax,y4,':k','LineWidth',2); 
                 
                hold on; 
                 
                plot(xsample(2),xsample(3),'go'); 
                 
                hold on; 
                 
                title('Discriminant Function with SOE Algorithm'); 
                 
                axis([ 1 700 1 5000]) 
                         
                corte4=-w04/w24; 
                 
                fprintf('Corte %f',corte4) 
                 
                hold on ; 
                 
                hgsave('WithSOE'); 
                 
                hold on 
                 
                cd .. 
                 

4.Discriminant Block 

 
function j =DiscriminantBlock(W1,W2,W3,W4,L,IFSVector,MaxPPDUduration)              
 
%Discriminant Block 
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             for j=1:L 
                  
                 
Thershold_Pocket(j)=W1'*[1;IFSVector(j);MaxPPDUduration(j)]; 
                  
                 
Thershold_Perceptron(j)=W2'*[1;IFSVector(j);MaxPPDUduration(j)]; 
                  
                 Thershold_LMS(j)=W3'*[1;IFSVector(j);MaxPPDUduration(j)]; 
                  
                 Thershold_SOE(j)=W4'*[1;IFSVector(j);MaxPPDUduration(j)]; 
                  
                  
                  
             end 
              
              
              
             fprintf('\n Number of points to be classified: %d \n',L) 
              
                
                     PorcentPocket=length(find(Thershold_Pocket>0)); 
                      
                 
                  
                  
                  
                  
                  
                 Real_PorcPocket=PorcentPocket*100/L; 
                  
                 PossiblesBluetooths1=100-Real_PorcPocket; 
                  
                 fprintf('\n Percentual of points in the Wi-Fi Class using 
the Pocket Algorithm is : %f \n',Real_PorcPocket); 
                  
                 fprintf('\n Percentual of points in the Bluetooth Class 
using the Pocket Algorithm is : %f \n',PossiblesBluetooths1); 
                  
                   
                    PorcentPerceptron=length(find(Thershold_Perceptron>0)); 
                      
                
                  
              
                  
                 Real_PorcPerceptron=PorcentPerceptron*100/L; 
                  
                 PossiblesBluetooths2=100-Real_PorcPerceptron; 
                  
                 fprintf('\n Percentual of points in the Wi-Fi Class using 
the Perceptron Algorithm is : %f \n',Real_PorcPerceptron); 
                  
                 fprintf(' \n Percentual of points in the Bluetooth Class 
using the Perceptron Algorithm is : %f \n',PossiblesBluetooths2); 
                  
                  
                  
                  
                     PorcentLMS=length(find(Thershold_LMS>0)); 
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                    Real_PorcLMS=PorcentLMS*100/L; 
                  
                    PossiblesBluetooths3=100-Real_PorcLMS; 
                     
                  
                  
                 fprintf('\n Percentual of points in the Wi-Fi Class using 
the LMS Algorithm is : %f \n',Real_PorcLMS); 
                  
                 fprintf('\n Percentual of points in the Bluetooth Class 
using the LMS Algorithm is : %f \n',PossiblesBluetooths3); 
                  
                  
                  
                     PorcentSOE=length(find(Thershold_SOE>0)); 
                      
                 
         Real_PorcSOE=PorcentSOE*100/L; 
                  
                 PossiblesBluetooths4=100-Real_PorcSOE; 
                  
                 fprintf('\n Percentual of points in the Wi-Fi Class using 
the SOE Algorithm is : %f \n',Real_PorcSOE); 
                  
                 fprintf('\n Percentual of points in the Bluetooth Class 
using the SOE Algorithm is : %f \n',PossiblesBluetooths4); 
 
5.Error 
 
%ErrorNumber 
% %Multi-Slot 
 
% W1=[27;-2951.00750966092;214]; 
%  
% W2=[-20.9780909571695;-754754.944960720;65177.3137731307]; 
%  
% W3=[-2.60459375983088e+40;-1.91568366881445e+40;3.80307560277537e+39]; 
%  
% W4=[2885.28906276758;-12.2577405322002;0.213666512014766]; 
 
 
%SingleSlot 
% W1=[-3;-1160.13813388255;614]; 
%  
% W2=[-1124.66666666667;-596979.329122128;393714.500000000]; 
% W3=[-791.939264646996;-412350.058961372;241720.118250060]; 
% W4=[-767.507895440477;-6.77765685180857;6.59157513268478]; 
% %  
 
 
%SingleSlot N=10000 
 
% W1=[-11; -1951.51989846758 ; 1254]; 
% W2=[-729.199999999998;-296965.142763335;143747.200000000]; 
% W3=[-11.0557264886324;-1950.94146912034; 1160.08983006525]; 
% W4=[-780.131200548504; -6.91890575158495;6.67045354238516]; 
%  
% %Multi Slot N=10000 
%  
% W1=[114;-7400.15315093904;619]; 
% W2=[438966.699999974;-894011.013611800;52211.6000000255]; 
% W3=[124.716346120036;-3852.40422992936;744.923713217399 ]; 
% W4=[1492.39002650608; -17.9499939253218;1.49834503999549]; 
%  
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C=2; 
 
M=2; 
 
 
 
 
%Wi_Fi Characterization 
 
 
[TSFVectorWIFI,DurationVectorWIFI]=WIFITrainingGeneration; 
 
 
 
[IFSVectorWIFI,MaxPPDUdurationWIFI,InterferenceWIFI]=FeatureExtraction(Durat
ionVectorWIFI,TSFVectorWIFI); 
 
 
% Bluetooth Charaterization 
 
%[DurationVectorBluetooth,TSFVectorBluetooth]=SSBluetoothTrafficGeneration; 
 
[DurationVectorBluetooth,TSFVectorBluetooth]=MSBluetoothTrafficGeneration; 
 
 
 
 
[IFSVectorBluetooth,MaxPPDUdurationBluetooth,InterferenceBluetooth]=FeatureE
xtraction(DurationVectorBluetooth,TSFVectorBluetooth); 
  
 
 
%Calculating the Feauture's Histogram 
 
Feature_matrix=zeros(length(IFSVectorWIFI),C*M); 
 
 
     
   
         
         
               
 
              Feature_matrix(1:length(IFSVectorWIFI),1)= IFSVectorWIFI; %IFS 
Wi-Fi 
               
               
              Feature_matrix(1:length(IFSVectorWIFI),2)= 
MaxPPDUdurationWIFI; %Max-Duration Wi-Fi 
               
               
              
Feature_matrix(1:length(IFSVectorWIFI),3)=IFSVectorBluetooth(1:length(IFSVec
torWIFI)) ; % IFS Bluetooth 
               
               
              
Feature_matrix(1:length(IFSVectorWIFI),4)=MaxPPDUdurationBluetooth(1:length(
IFSVectorWIFI)); %Max-Duration Bluetooth 
               
               
              X1=Feature_matrix; 
               
               
  [N,columna]=size(Feature_matrix) % Training Matrix 
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  %Generation matrix of Training (M,N*C) dimension 
    
     
    D=N*C;% Total Number of Training 
     
    
    Xp=zeros(M,N); %Training Matrix 
     
    X_convertion= (X1)'; 
     
    Xq=zeros(M,N*C); 
     
    X=zeros(1:M,N*C); 
     
     
    
    
     
    for k=1:C 
    
         Xp(1:M,1:N)= X_convertion(1+M*(k-1):(k*M),1:N); 
          
         Xq=[Xq Xp]; 
          
         Xp=zeros(M,N); 
          
    end 
     
  X=Xq(1:M,(N*C)+1:2*(N*C)); 
   
  Ntotal=N*C; 
   
  X=[ones(1,Ntotal); X(1:M,1:Ntotal)]; 
     
  NumPocket1=zeros(1,N); 
   
  NumPocket2=zeros(1,N); 
   
  NumPerce1=zeros(1,N); 
   
  NumPerce2=zeros(1,N); 
   
  NumLMS1=zeros(1,N); 
   
  NumLMS2=zeros(1,N); 
   
  NumSOE1=zeros(1,N); 
   
  NumSOE2=zeros(1,N); 
   
  NumPocket1=zeros(1,N); 
   
  NumPocket2=zeros(1,N); 
   
   
    
  %Verification of misclassified 
   
  for i=1:N 
        
      NumPocket1(i)= W1'*X(1:M+1,i); 
      NumPerce1(i)= W2'*X(1:M+1,i); 
      NumLMS1(i)= W3'*X(1:M+1,i); 
      NumSOE1(i)= W4'*X(1:M+1,i); 
       
      NumPocket2(i)= W1'*X(1:M+1,N+i); 
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      NumPerce2(i)= W2'*X(1:M+1,i+N); 
      NumLMS2(i)= W3'*X(1:M+1,i+N); 
      NumSOE2(i)= W4'*X(1:M+1,N+i); 
       
       
  end 
   
  Num11=length(find(NumPocket1>0)); 
   
  Num12=length(find(NumPocket2<0)); 
   
  Num21=length(find(NumPerce1>0)); 
   
  Num22=length(find(NumPerce2<0)); 
   
   Num31=length(find(NumLMS1>0)); 
   
  Num32=length(find(NumLMS2<0)); 
   
   Num41=length(find(NumSOE1>0)); 
   
  Num42=length(find(NumSOE2<0)); 
   
 
  Error11=N-Num11; 
   
  Error12=N-Num12; 
   
  Error21=N-Num21; 
   
  Error22=N-Num22; 
   
  Error31=N-Num31; 
   
  Error32=N-Num32; 
   
  Error41=N-Num41; 
   
  Error42=N-Num42; 
   
  fprintf('\n The Number of misclassified Wi-Fi second Pocket   is: %d \n 
',Error11); 
   
   
  fprintf('\n The Number of misclassified  Bluetooth second Pocket is: %d 
\n',Error12); 
   
   fprintf('\n The Number of misclassified Wi-Fi second Perceptron is: %d 
\n',Error21); 
   
   
  fprintf('\n The Number of misclassified Bluetooth second Perceptron is: %d 
\n',Error22); 
   
   
   
   fprintf('\n The Number of misclassified Wi-Fi second LMS is :%d \n 
',Error31); 
   
   
  fprintf('\n The Number of misclassified Bluetooth second LMS  is: %d 
\n',Error32); 
   
   
   
   fprintf('\n The Number of misclassified Wi-Fi second SOE  is: %d\n 
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',Error41); 
   
   
  fprintf('\n The Number of misclassified Bluetooth second SOE is: %d 
\n',Error42); 
   
6.Feature Extraction 
 
%Feature Extraction 
 
function 
[IFSVector,MaxPPDUduration,Interference]=FeatureExtraction(DurationVector,TS
FVector) 
 
 
lDV = length(DurationVector)-1; 
 
 cellIFS = 0; 
  
 IFSVector=[]; 
 
 for DurationCounter = 1:lDV 
      
     IFS =  TSFVector(DurationCounter+1)-TSFVector(DurationCounter)-
DurationVector(DurationCounter); 
      
      if 
(0.6*DurationVector(DurationCounter)>DurationVector(DurationCounter+1)&(IFS<
625)&(IFS>0)) 
           
          cellIFS = cellIFS+1; 
           
          IFSVector(cellIFS)=IFS;  
           
          CounterImportantValues(cellIFS)=DurationCounter; 
      end 
 end 
  
 for fsc = 1:length(CounterImportantValues) 
      
    if (fsc==1) 
         
        MaxPPDUduration(1)= DurationVector(1); 
         
        IFSPlotted(1)=IFSVector(1); 
     else 
        intmin = CounterImportantValues(fsc-1); 
         
        intmax = CounterImportantValues(fsc); 
         
        PPDUset = DurationVector(intmin:intmax); 
         
        MaxPPDUduration(fsc) = max(PPDUset); 
         
        IFSPlotted(fsc) = IFSVector(fsc); 
         
         
    end 
 end 
  
 Interference=0; 
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 7 .  Import  Wi-Fi   
 
 
 
function [TSFVector,DurationVector]=import_WiFi(filename) 
 
%filename = '2503capture5.txt' 
%PPDU duration extraction 
fid = fopen (filename,'a+'); 
acqstring = fileread(filename); 
index1 = regexp(acqstring,'Duration'); 
PacketsCaptured = length(index1); 
index2 = regexp(acqstring,'Period               :'); 
indexlast = index2-1; 
DurationVector = zeros(1,PacketsCaptured); 
 
for i0 = 1:PacketsCaptured 
     
 textdurationline = acqstring(index1(i0):indexlast(i0)); 
 textscannedduration = textscan(textdurationline,'%*s %*s %f %*s'); 
 DurationVector(i0) = cell2mat(textscannedduration); 
 
end 
 
%TSF extraction 
fclose(fid); 
 
fid = fopen (filename,'a+'); 
acqstringTSF = fileread(filename); 
indexTSF1 = regexp(acqstringTSF,'TSF'); 
PacketsCaptured = length(indexTSF1); 
indexTSF2 = regexp(acqstring,'Rate'); 
indexlastTSF = indexTSF2-1; 
TSFVector = zeros(1,PacketsCaptured); 
 
for j0 = 1:PacketsCaptured 
    
 textTSFline = acqstringTSF(indexTSF1(j0):indexlastTSF(j0)); 
 textscannedTSF = textscan(textTSFline,'%*s %*s %f %*s'); 
 TSFVector(j0) = cell2mat(textscannedTSF);  
end 
 
TSFVector = TSFVector - TSFVector(1); 
fclose(fid); 
 
%Preamble extraction 
fid = fopen (filename,'a+'); 
acqstringPre = fileread(filename); 
indexPre1 = regexp(acqstringPre,'Preamble'); 
PacketsCaptured = length(indexPre1); 
indexPre2 = regexp(acqstring,'Duration             :'); 
indexlastPre = indexPre2-1; 
PreVector = zeros(1,PacketsCaptured); 
 
for j0 = 1:PacketsCaptured 
    
 textPreline = acqstringPre(indexPre1(j0):indexlastPre(j0)); 
 textscannedPre = textscan(textPreline, '%*s %*s %s'); 
 strtest = cell2str(textscannedPre); 
 TF = strcmp('Long', strtest); 
 if (TF == 1) 
     TSFVector(j0) = TSFVector(j0)-192; 
      
 else 
     TSFVector(j0) = TSFVector(j0)-96; 
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 end 
end 
 
TSFVector = TSFVector - TSFVector(1); 
fclose(fid); 
 
8.LMS 
 
% LMS Algorithm 
 
function w= LMS(X,M,N,C,W2,y ) 
 
Ntotal=N*C; 
 
 
% y=zeros(1,Ntotal); 
%  
% for t=1:Ntotal 
%      
%     y(t)=W2'*XLMS(1:(M+1),t); 
%      
% end 
 
 
% [m,Ntotal]=size(XLMS); 
%  
%  
% w=W2; 
%  
%  
% rhoK= 4e-9; % Learning rate 
%  
% for i=1:Ntotal 
%      
%     w= w+((rhoK)*(y(i)-(XLMS(1:m,i))'*w)*XLMS(1:m,i)); 
% end 
 
%---------------- 
 
Ntotal=N*C; 
 
XLMSinitial=[ones(1,Ntotal); X(1:M,1:Ntotal)]; 
 
Y=[XLMSinitial(1:M+1,1:N) (-1)*XLMSinitial(1:M+1,N+1:2*N)]; 
 
w=ones(1,M+1)'; 
 
y=100*ones(Ntotal,1); 
 
rho=1e-6; 
 
 
 
% bmin=0.01; 
 
 
 
 
for k=1:Ntotal 
     
    error=y(k)-(w'*Y(1:M+1,k)); 
     
    errorpositive=(error+abs(error))/2; 
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    ynew(k)=y(k)+2*(rho)*errorpositive; 
     
    w=w+(rho/k)*Y(1:M+1,k)*(ynew(k)-(w'*Y(1:M+1,k))); 
     
     
         
     
end 
 
 
   
 
9.Mixed Bluetooth 
 
function [DurationVector,TSFVector] = MixedMSBluetoothWiFi 
l=200; 
 
[DurationVectorB,TSFVectorB]=MSBluetoothTrafficGenerationsample(l); 
 
%[DurationVectorB,TSFVectorB]=SSBluetoothTrafficGenerationsample(l); 
 
filename = 'VAIOHPATHSKYPEUTUBEOPENOFFICEINFOCOM.txt'; 
    
[TSFVectorW,DurationVectorW]=import_WiFi(filename); 
TSFVector = sort([TSFVectorW TSFVectorB+10000]); 
 
W=1; 
B=1; 
for i = 1:length(TSFVector)-1 
    if (TSFVector(i)==TSFVector(i+1)); 
        fprintf('warning'); 
    end 
end 
         
for mix = 1:length(TSFVector) 
     
    if (isempty(find(TSFVectorW==TSFVector(mix)))==0) 
         DurationVector(mix)=DurationVectorW(W); 
         W=W+1; 
    else 
        DurationVector(mix)= DurationVectorB(B); 
        B = B+1; 
    end 
end 
 
 
 
10.MS Bluetooth Traff ic  Generation 
 
function 
[DurationVectorBluetooth,TSFVectorBluetooth]=MSBluetoothTrafficGeneration 
 
%IFs and Max PPDU Duration 
     
    TS_duration = 625e-6; 
     
    jitter = 10e-6; 
     
    maxP_duration = 366e-6; 
     
    NULL_duration = 126e-6; 
 
    l = 20000; 
     
    probability = 0.7; 
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    packet_duration = []; 
     
    arrival_time = []; 
 
 
 
% Scenario 3: 
% 80% packets last 1 time slot 
% 15% packets last 3 time slot 
% 5% packets last 5 time slot 
 
    arrival_time(1) = 0; 
 
for i = 1:l 
     
    if mod(i,2) == 1 
        % odd packet -> data packet (master) 
         
        chooser = rand(1,1); 
         
        if chooser <= 0.8 % 1 time slot 
             
            hmts = 1; % how many time slots 
             
        elseif chooser > 0.95 % 5 time slot 
             
            hmts = 5; % how many time slots 
             
        else % 3 time slot 
             
            hmts = 3; % how many time slots 
             
        end 
     
        switch hmts 
             
            case 1  % 1 time slot 
                 
                if rand <= probability 
                     
                    packet_duration(i) = maxP_duration; 
                     
                else 
                     
                    packet_duration(i) = NULL_duration + 1e-
6*randint(1,1,[0,(maxP_duration-NULL_duration)*1e6]); 
                     
                end 
                 
                if i < l 
                     
                    arrival_time = [arrival_time 
arrival_time(length(arrival_time))+TS_duration]; 
                     
                end 
                 
            case 3  % 3 time slot 
                 
                if rand <= probability 
                     
                    packet_duration(i) = 1622e-6; 
                     
                else 
                     
                    packet_duration(i) = 2*TS_duration + 1e-
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6*randint(1,1,[0,372]); 
                     
                end 
                 
                if i < l 
                     
                    arrival_time = [arrival_time 
arrival_time(length(arrival_time))+3*TS_duration]; 
                     
                end 
                 
                 
            case 5  % 5 time slot 
                 
                if rand <= probability 
                     
                    packet_duration(i) = 2870e-6; 
                     
                else 
                     
                    packet_duration(i) = 4*TS_duration + 1e-
6*randint(1,1,[0,370]); 
                     
                end 
                 
                if i < l 
                     
                    arrival_time = [arrival_time 
arrival_time(length(arrival_time))+5*TS_duration]; 
                     
                end 
                 
        end 
         
    else 
        % even packet -> NULL packet as ACK (slave) 
         
        packet_duration(i) = NULL_duration; 
         
        if i < l 
             
            arrival_time = [arrival_time 
arrival_time(length(arrival_time))+TS_duration]; 
             
        end 
         
    end 
     
     
end 
 
 
for i = 2:l 
     
    j = randn*jitter/3; % 99% of values in +or- 3 sigma -> in +or- jitter 
     
    if j < - jitter 
         
        j = - jitter; 
         
    end 
     
    if j > jitter 
         
        j = jitter; 
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    end 
     
    arrival_time(i) = arrival_time(i)+j; 
end 
 
DurationVectorBluetooth = 10^6.*packet_duration; 
 
TSFVectorBluetooth = 10^6.*arrival_time; 
   
 
1 1 .MS Bluetooth Traff ic  Generation sample 
 
function 
[DurationVectorBluetooth,TSFVectorBluetooth]=MSBluetoothTrafficGenerationsam
ple(l); 
 
%IFs and Max PPDU Duration 
     
    TS_duration = 625e-6; 
     
    jitter = 10e-6; 
     
    maxP_duration = 366e-6; 
     
    NULL_duration = 126e-6; 
 
   % l = 1000; 
     
    probability = 0.7; 
 
    packet_duration = []; 
     
    arrival_time = []; 
 
 
 
% Scenario 3: 
% 80% packets last 1 time slot 
% 15% packets last 3 time slot 
% 5% packets last 5 time slot 
 
    arrival_time(1) = 0; 
 
for i = 1:l 
     
    if mod(i,2) == 1 
        % odd packet -> data packet (master) 
         
        chooser = rand(1,1); 
         
        if chooser <= 0.8 % 1 time slot 
             
            hmts = 1; % how many time slots 
             
        elseif chooser > 0.95 % 5 time slot 
             
            hmts = 5; % how many time slots 
             
        else % 3 time slot 
             
            hmts = 3; % how many time slots 
             
        end 
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        switch hmts 
             
            case 1  % 1 time slot 
                 
                if rand <= probability 
                     
                    packet_duration(i) = maxP_duration; 
                     
                else 
                     
                    packet_duration(i) = NULL_duration + 1e-
6*randint(1,1,[0,(maxP_duration-NULL_duration)*1e6]); 
                     
                end 
                 
                if i < l 
                     
                    arrival_time = [arrival_time 
arrival_time(length(arrival_time))+TS_duration]; 
                     
                end 
                 
            case 3  % 3 time slot 
                 
                if rand <= probability 
                     
                    packet_duration(i) = 1622e-6; 
                     
                else 
                     
                    packet_duration(i) = 2*TS_duration + 1e-
6*randint(1,1,[0,372]); 
                     
                end 
                 
                if i < l 
                     
                    arrival_time = [arrival_time 
arrival_time(length(arrival_time))+3*TS_duration]; 
                     
                end 
                 
                 
            case 5  % 5 time slot 
                 
                if rand <= probability 
                     
                    packet_duration(i) = 2870e-6; 
                     
                else 
                     
                    packet_duration(i) = 4*TS_duration + 1e-
6*randint(1,1,[0,370]); 
                     
                end 
                 
                if i < l 
                     
                    arrival_time = [arrival_time 
arrival_time(length(arrival_time))+5*TS_duration]; 
                     
                end 
                 
        end 
         
    else 
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        % even packet -> NULL packet as ACK (slave) 
         
        packet_duration(i) = NULL_duration; 
         
        if i < l 
             
            arrival_time = [arrival_time 
arrival_time(length(arrival_time))+TS_duration]; 
             
        end 
         
    end 
     
     
end 
 
 
for i = 2:l 
     
    j = randn*jitter/3; % 99% of values in +or- 3 sigma -> in +or- jitter 
     
    if j < - jitter 
         
        j = - jitter; 
         
    end 
     
    if j > jitter 
         
        j = jitter; 
         
    end 
     
    arrival_time(i) = arrival_time(i)+j; 
end 
 
DurationVectorBluetooth = 10^6.*packet_duration; 
 
TSFVectorBluetooth = 10^6.*arrival_time; 
 
12.Perce 
 
% Perceptrom Algorithm 
 
function w =perce(X,y,M,N,C,w_ini) 
 
Ntotal=N*C; 
 
Xper=[ones(1,Ntotal); X(1:M,1:Ntotal)]; 
 
 
[m,Ntotal]=size(Xper); 
 
yper=y; 
 
max_iter=100000; % Maximum allowable number of iterations 
  
rho=1; % Learning rate  
 
w=w_ini; % Initialization of the parameter vector 
 
iter=0; % Iteration counter 
 
mis_clas=Ntotal; % Number of misclassified vectors 
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while(mis_clas>0)&&(iter<max_iter) 
     
     
    iter=iter+1; 
     
    mis_clas=0; 
     
    gradi=zeros(M+1,1) ;% Inizialitation of the gradient term 
     
    for i=1:Ntotal 
         
        if((Xper(:,i)'*w)*yper(i)<0) % Verification Perceptron cost 
             
            mis_clas=mis_clas+1; 
             
            gradi=gradi-(yper(i)*Xper(:,i)); % Computation of the gradient 
term 
        end 
         
    end 
     
    w=w-(1/iter)*gradi; %Updating the parameter vector 
end 
 
fprintf('\n Iteration Number with Perceptron %d \n',iter); 
 
13 .Pocket 
 
% Pocket Algorithm with Ratchet 
 
function W= Pocket(X,y,M,N,C) 
 
%X=[] Training Feature Vectors Matrix 
 
%y=[] Vector of desired responses 
 
%W=[] Vector of integral pocket weights 
 
%pi=[] Vector of integral perceptron weights 
 
%run_pi= number of consecutive correct classifications using perceptron 
weights pi 
 
%run_w= number of consecutive correct classifications using pockets weights 
W 
 
%num_okpi= total number of training examples that pi correctly classifies. 
 
%num_okw= total number of training examples that W correctly classifies. 
 
Ntotal=N*C; 
 
Xpocket=[ones(1,Ntotal); X(1:M,1:Ntotal)]; 
 
 
[m,Ntotal]=size(Xpocket); 
 
 
pi=(zeros(1,m))'; 
 
run_pi=0; 
 
run_w=0; 
 
num_okpi=0; 
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num_okw=0; 
 
num_Iteration=80000; 
 
Iteration_counter=1; 
 
index= ceil(Ntotal*rand(1,1)) ;% Randomly pick a training example 
 
x_sample= Xpocket(1:m,index); 
 
y_sample= y(index); 
 
 
 
      
        while ((Iteration_counter<num_Iteration) && (num_okw<Ntotal)) 
             
                  
                  
 
                f_sample=pi'*x_sample; 
 
                    if (((f_sample >0) && (y_sample ==1)) || ((f_sample <0) 
&& (y_sample ==-1))) 
                             
                           
                       
                            run_pi=run_pi+1; 
          
                                if (run_pi>run_w) 
                 
                            %Compute num_okpi by checking every training 
example 
                 
                             for i=1:Ntotal 
                    
                               f_sample_vector(i)=pi'*Xpocket(1:m,i); 
                     
                             end 
 
                             thershold=f_sample_vector.*y; 
                     
                             correctly_index=find(thershold>0); 
                     
                             num_okpi=length(correctly_index); 
                     
                                if (num_okpi>num_okw) 
                         
                                    W=pi; 
                          
                                    run_w=run_pi; 
                          
                                    num_okw=num_okpi; 
                          
                                        if (num_okw==Ntotal) 
                              
                                        break 
                           
                                         
                                        end 
                                         
                                end 
                                 
                                end 
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                         index= ceil(Ntotal*rand(1,1)); % Randomly pick a 
training example 
 
                        x_sample= Xpocket(1:m,index); 
 
                        y_sample= y(index); 
 
                        f_sample=pi'*x_sample; 
                  
                          
                              
                                 
                        
                         
                        
                              
                    else 
                       
                             
                      
                            pi=pi+y_sample*x_sample; 
                             
                            run_w=0; 
                  
                            run_pi=0; 
                  
                  
 
                  
                  
                  
                        end 
             
            Iteration_counter=Iteration_counter+1; 
      
        end 
     
        fprintf('\n Iteration Number with Pocket: %d \n',Iteration_counter); 
 
14.SOE 
 
%Sum of Error Squares Estimation 
 
 
 
 
function w= SOE(X,M,N,C)  
 
% Ntotal=N*C; 
%  
% XSOE=[ones(1,Ntotal); X(1:M,1:Ntotal)]; 
%  
%  
% [m,Ntotal]=size(XSOE); 
%  
% y=zeros(1,Ntotal)'; 
%  
% for t=1:Ntotal 
%      
%     y(t)=W2'*XSOE(1:(M+1),t); 
%      
% end 
%  
% W=(zeros(1,m))'; 
%  
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%  
%  
% %Compute the weights vector 
%  
%  
%      W= inv(XSOE*XSOE')*(XSOE*y); 
%       
 
Ntotal=N*C; 
 
XSOEinitial=[ones(1,Ntotal); X(1:M,1:Ntotal)]; 
 
Y1=XSOEinitial'; 
 
Y=[Y1(1:N,1:M+1);(-1)*Y1(N+1:2*N,1:M+1)]; 
 
w=ones(1,M+1)'; 
 
y=ones(Ntotal,1); 
 
rho=0.9; 
 
% bmin=0.01; 
 
MaxIteration=1000000; 
 
 
 
for k=1:MaxIteration 
     
    error=(Y*w)-y; 
     
    errorpositive=(error+abs(error))/2; 
     
    y=y+2*(rho)*errorpositive; 
     
    w=(inv(Y'*Y)*Y')*y; 
     
    if(Y*w >0) 
         
        break; 
         
    end 
     
end 
 
 
    fprintf('K=,%d',k); 
%      
%     x=linspace(1,100,1000); 
%      
%     w1=w(1); 
%      
%     w2=w(2); 
%      
%     w3=w(3); 
%      
%     ynuevo =zeros(1,1000); 
%      
%     ynuevo =(-1)*((w2*x)+w1)/w3; 
%      
%     plot(x,ynuevo) 
%     hold on; 
%     grid on; 
%      
%     axis([1 50 0 20]); 
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% 
 
15 .  SS Bluetooth Traff ic  Generation 
 
                            function 
[DurationVectorBluetooth,TSFVectorBluetooth]=SSBluetoothTrafficGeneration 
 
clear 
clc 
close all 
 
 
 
% Initialization 
 
TS_duration = 625e-6; 
jitter = 10e-6; 
maxP_duration = 366e-6; 
NULL_duration = 126e-6; 
 
l = 20000; 
probability = 0.7; 
 
packet_duration = []; 
arrival_time = []; 
 
 
 
% Scenario 1: 
% 100% packets last 1 time slot 
 
for i = 1:l 
     
    if mod(i,2) == 1 
        % odd packet -> data packet (master) 
        if rand <= probability 
            packet_duration(i) = maxP_duration; 
        else 
            packet_duration(i) = NULL_duration + 1e-
6*randint(1,1,[0,(maxP_duration-NULL_duration)*1e6]); 
        end 
    else 
        % even packet -> NULL packet as ACK (slave) 
        packet_duration(i) = NULL_duration; 
    end 
     
    arrival_time(i) = (i-1)*TS_duration; 
     
end 
 
for i = 2:l 
    j = randn*jitter/3; % 99% of values in +or- 3 sigma -> in +or- jitter 
    if j < - jitter 
        j = - jitter; 
    end 
    if j > jitter 
        j = jitter; 
    end 
    arrival_time(i) = arrival_time(i)+j; 
end 
 
DurationVectorBluetooth = 10^6.*packet_duration; 
 
TSFVectorBluetooth = 10^6.*arrival_time; 
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16.SS Bluetooth Traff ic  Generation sample 
 
function 
[DurationVectorBluetooth,TSFVectorBluetooth]=SSBluetoothTrafficGenerationsam
ple(l) 
 
% clear 
% clc 
% close all 
%  
 
 
% Initialization 
 
TS_duration = 625e-6; 
jitter = 10e-6; 
maxP_duration = 366e-6; 
NULL_duration = 126e-6; 
 
% l = 1000; 
probability = 0.7; 
 
packet_duration = []; 
arrival_time = []; 
 
 
 
% Scenario 1: 
% 100% packets last 1 time slot 
 
for i = 1:l 
     
    if mod(i,2) == 1 
        % odd packet -> data packet (master) 
        if rand <= probability 
            packet_duration(i) = maxP_duration; 
        else 
            packet_duration(i) = NULL_duration + 1e-
6*randint(1,1,[0,(maxP_duration-NULL_duration)*1e6]); 
        end 
    else 
        % even packet -> NULL packet as ACK (slave) 
        packet_duration(i) = NULL_duration; 
    end 
     
    arrival_time(i) = (i-1)*TS_duration; 
     
end 
 
for i = 2:l 
    j = randn*jitter/3; % 99% of values in +or- 3 sigma -> in +or- jitter 
    if j < - jitter 
        j = - jitter; 
    end 
    if j > jitter 
        j = jitter; 
    end 
    arrival_time(i) = arrival_time(i)+j; 
end 
 
DurationVectorBluetooth = 10^6.*packet_duration; 
 
TSFVectorBluetooth = 10^6.*arrival_time; 
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17.  Wi-Fi  Traff ic  Adquisit ion 
 
 
function [TSFVector,DurationVector] = WIFITrafficAcquisition(filename) 
 
fid = fopen (filename,'a+'); 
acqstring = fileread(filename); 
index1 = regexp(acqstring,'Duration'); 
PacketsCaptured = length(index1); 
index2 = regexp(acqstring,'Period               :'); 
indexlast = index2-1; 
DurationVector = zeros(1,PacketsCaptured); 
 
for i0 = 1:PacketsCaptured 
     
 textdurationline = acqstring(index1(i0):indexlast(i0)); 
 textscannedduration = textscan(textdurationline,'%*s %*s %f %*s'); 
 DurationVector(i0) = cell2mat(textscannedduration); 
 
end 
 
fclose(fid); 
 
fid = fopen (filename,'a+'); 
acqstringTSF = fileread(filename); 
indexTSF1 = regexp(acqstringTSF,'TSF'); 
PacketsCaptured = length(indexTSF1); 
indexTSF2 = regexp(acqstring,'Rate'); 
indexlastTSF = indexTSF2-1; 
TSFVector = zeros(1,PacketsCaptured); 
 
for j0 = 1:PacketsCaptured 
    
 textTSFline = acqstringTSF(indexTSF1(j0):indexlastTSF(j0)); 
 textscannedTSF = textscan(textTSFline,'%*s %*s %f %*s'); 
 TSFVector(j0) = cell2mat(textscannedTSF);  
end 
 
TSFVector = TSFVector - TSFVector(1); 
fclose(fid); 
 
 
 
 
18.Wi-Fi   Training Generation 
 
function[TSFVectorWIFI,DurationVectorWIFI]=WIFITrainingGeneration 
 
 
filename1 = 'VAIOHPATHSKYPEUTUBEOPENOFFICEINFOCOM3.txt'; 
 
[TSFVector1,DurationVector1]=import_WiFi(filename1); 
 
filename2 = 'VAIOHPATHSKYPEUTUBEOPENOFFICEINFOCOM2.txt'; 
 
[TSFVector2,DurationVector2]=import_WiFi(filename2); 
 
 
filename3 = 'VAIOHPdv6000DownINFOCOM.txt'; 
 
[TSFVector3,DurationVector3]=import_WiFi(filename3); 
 
 
filename4 = 'VAIODownINFOCOM.txt'; 
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[TSFVector4,DurationVector4]=import_WiFi(filename4); 
 
 
filename5 = 'VAIOATHSKYPEUTUBEINFOCOM3.txt'; 
 
[TSFVector5,DurationVector5]=import_WiFi(filename5); 
 
 
filename6 = 'VAIOATHSKYPEUTUBEINFOCOM2.txt'; 
 
[TSFVector6,DurationVector6]=import_WiFi(filename6); 
 
filename7 = '2503capture1.txt'; 
 
[TSFVector7,DurationVector7]=import_WiFi(filename7); 
 
filename8 = '2503capture2.txt'; 
 
[TSFVector8,DurationVector8]=import_WiFi(filename8); 
 
 
filename9 = '2503capture3.txt'; 
 
[TSFVector9,DurationVector9]=import_WiFi(filename9); 
 
 
filename10 = '2503capture4.txt'; 
 
[TSFVector10,DurationVector10]=import_WiFi(filename10); 
 
 
filename11 = '2503capture5.txt'; 
 
[TSFVector11,DurationVector11]=import_WiFi(filename11); 
 
 
filename12 = '2503capture6.txt'; 
 
[TSFVector12,DurationVector12]=import_WiFi(filename12); 
 
 
filename13 = '2503capture7.txt'; 
 
[TSFVector13,DurationVector13]=import_WiFi(filename13); 
 
 
filename14 = '2503capture8.txt'; 
 
[TSFVector14,DurationVector14]=import_WiFi(filename14); 
 
 
filename15 = '2503capture9.txt'; 
 
[TSFVector15,DurationVector15]=import_WiFi(filename15); 
 
 
filename16 = '2503capture10.txt'; 
 
[TSFVector16,DurationVector16]=import_WiFi(filename16); 
 
 
 
DurationVectorWIFI=[DurationVector1 DurationVector2 DurationVector3 
DurationVector4 DurationVector5 DurationVector6 DurationVector7 
DurationVector8 DurationVector9 DurationVector10 DurationVector11 
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DurationVector12 DurationVector13 DurationVector14  DurationVector16]; 
 
TSFVector2 =  
TSFVector2+TSFVector1(length(TSFVector1))+DurationVector1(length(DurationVec
tor1))+ 3000; 
 
TSFVector3 = 
TSFVector3+TSFVector1(length(TSFVector1))+DurationVector1(length(DurationVec
tor1))+TSFVector2(length(TSFVector2))+DurationVector2(length(DurationVector2
))+3000; 
TSFVector4 = 
TSFVector4+TSFVector1(length(TSFVector1))+DurationVector1(length(DurationVec
tor1))+TSFVector2(length(TSFVector2))+DurationVector2(length(DurationVector2
))+TSFVector3(length(TSFVector3))+DurationVector3(length(DurationVector3))+3
000; 
TSFVector5 = 
TSFVector5+TSFVector1(length(TSFVector1))+DurationVector1(length(DurationVec
tor1))+TSFVector2(length(TSFVector2))+DurationVector2(length(DurationVector2
))+TSFVector3(length(TSFVector3))+DurationVector3(length(DurationVector3))+T
SFVector4(length(TSFVector4))+DurationVector4(length(DurationVector4))+3000; 
TSFVector6 = 
TSFVector6+TSFVector1(length(TSFVector1))+DurationVector1(length(DurationVec
tor1))+TSFVector2(length(TSFVector2))+DurationVector2(length(DurationVector2
))+TSFVector3(length(TSFVector3))+DurationVector3(length(DurationVector3))+T
SFVector4(length(TSFVector4))+DurationVector4(length(DurationVector4))+TSFVe
ctor5(length(TSFVector5))+DurationVector5(length(DurationVector5))+3000; 
 
TSFVector7 = 
TSFVector7+TSFVector1(length(TSFVector1))+DurationVector1(length(DurationVec
tor1))+TSFVector2(length(TSFVector2))+DurationVector2(length(DurationVector2
))+TSFVector3(length(TSFVector3))+DurationVector3(length(DurationVector3))+T
SFVector4(length(TSFVector4))+DurationVector4(length(DurationVector4))+TSFVe
ctor5(length(TSFVector5))+DurationVector5(length(DurationVector5))+TSFVector
6(length(TSFVector6))+DurationVector6(length(DurationVector6))+3000; 
TSFVector8= 
TSFVector8+TSFVector1(length(TSFVector1))+DurationVector1(length(DurationVec
tor1))+TSFVector2(length(TSFVector2))+DurationVector2(length(DurationVector2
))+TSFVector3(length(TSFVector3))+DurationVector3(length(DurationVector3))+T
SFVector4(length(TSFVector4))+DurationVector4(length(DurationVector4))+TSFVe
ctor5(length(TSFVector5))+DurationVector5(length(DurationVector5))+TSFVector
6(length(TSFVector6))+DurationVector6(length(DurationVector6))+ 
TSFVector7(length(TSFVector7))+DurationVector7(length(DurationVector7))+3000
; 
 
TSFVector9= 
TSFVector9+TSFVector1(length(TSFVector1))+DurationVector1(length(DurationVec
tor1))+TSFVector2(length(TSFVector2))+DurationVector2(length(DurationVector2
))+TSFVector3(length(TSFVector3))+DurationVector3(length(DurationVector3))+T
SFVector4(length(TSFVector4))+DurationVector4(length(DurationVector4))+TSFVe
ctor5(length(TSFVector5))+DurationVector5(length(DurationVector5))+TSFVector
6(length(TSFVector6))+DurationVector6(length(DurationVector6))+ 
TSFVector7(length(TSFVector7))+DurationVector7(length(DurationVector7))+TSFV
ector8(length(TSFVector8))+DurationVector8(length(DurationVector8))+3000; 
 
TSFVector10= 
TSFVector10+TSFVector1(length(TSFVector1))+DurationVector1(length(DurationVe
ctor1))+TSFVector2(length(TSFVector2))+DurationVector2(length(DurationVector
2))+TSFVector3(length(TSFVector3))+DurationVector3(length(DurationVector3))+
TSFVector4(length(TSFVector4))+DurationVector4(length(DurationVector4))+TSFV
ector5(length(TSFVector5))+DurationVector5(length(DurationVector5))+TSFVecto
r6(length(TSFVector6))+DurationVector6(length(DurationVector6))+ 
TSFVector7(length(TSFVector7))+DurationVector7(length(DurationVector7))+TSFV
ector8(length(TSFVector8))+DurationVector8(length(DurationVector8))+TSFVecto
r9(length(TSFVector9))+DurationVector9(length(DurationVector9))+3000; 
 
TSFVector11= 
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TSFVector11+TSFVector1(length(TSFVector1))+DurationVector1(length(DurationVe
ctor1))+TSFVector2(length(TSFVector2))+DurationVector2(length(DurationVector
2))+TSFVector3(length(TSFVector3))+DurationVector3(length(DurationVector3))+
TSFVector4(length(TSFVector4))+DurationVector4(length(DurationVector4))+TSFV
ector5(length(TSFVector5))+DurationVector5(length(DurationVector5))+TSFVecto
r6(length(TSFVector6))+DurationVector6(length(DurationVector6))+ 
TSFVector7(length(TSFVector7))+DurationVector7(length(DurationVector7))+TSFV
ector8(length(TSFVector8))+DurationVector8(length(DurationVector8))+TSFVecto
r9(length(TSFVector9))+DurationVector9(length(DurationVector9))+ 
TSFVector10(length(TSFVector10))+DurationVector10(length(DurationVector10))+
3000; 
TSFVector12= 
TSFVector12+TSFVector1(length(TSFVector1))+DurationVector1(length(DurationVe
ctor1))+TSFVector2(length(TSFVector2))+DurationVector2(length(DurationVector
2))+TSFVector3(length(TSFVector3))+DurationVector3(length(DurationVector3))+
TSFVector4(length(TSFVector4))+DurationVector4(length(DurationVector4))+TSFV
ector5(length(TSFVector5))+DurationVector5(length(DurationVector5))+TSFVecto
r6(length(TSFVector6))+DurationVector6(length(DurationVector6))+ 
TSFVector7(length(TSFVector7))+DurationVector7(length(DurationVector7))+TSFV
ector8(length(TSFVector8))+DurationVector8(length(DurationVector8))+TSFVecto
r9(length(TSFVector9))+DurationVector9(length(DurationVector9))+ 
TSFVector10(length(TSFVector10))+DurationVector10(length(DurationVector10))+ 
TSFVector11(length(TSFVector11))+DurationVector11(length(DurationVector11))+
3000; 
TSFVector13= 
TSFVector13+TSFVector1(length(TSFVector1))+DurationVector1(length(DurationVe
ctor1))+TSFVector2(length(TSFVector2))+DurationVector2(length(DurationVector
2))+TSFVector3(length(TSFVector3))+DurationVector3(length(DurationVector3))+
TSFVector4(length(TSFVector4))+DurationVector4(length(DurationVector4))+TSFV
ector5(length(TSFVector5))+DurationVector5(length(DurationVector5))+TSFVecto
r6(length(TSFVector6))+DurationVector6(length(DurationVector6))+ 
TSFVector7(length(TSFVector7))+DurationVector7(length(DurationVector7))+TSFV
ector8(length(TSFVector8))+DurationVector8(length(DurationVector8))+TSFVecto
r9(length(TSFVector9))+DurationVector9(length(DurationVector9))+ 
TSFVector10(length(TSFVector10))+DurationVector10(length(DurationVector10))+ 
TSFVector11(length(TSFVector11))+DurationVector11(length(DurationVector11))+ 
TSFVector12(length(TSFVector12))+DurationVector12(length(DurationVector12))+
3000; 
TSFVector14= 
TSFVector14+TSFVector1(length(TSFVector1))+DurationVector1(length(DurationVe
ctor1))+TSFVector2(length(TSFVector2))+DurationVector2(length(DurationVector
2))+TSFVector3(length(TSFVector3))+DurationVector3(length(DurationVector3))+
TSFVector4(length(TSFVector4))+DurationVector4(length(DurationVector4))+TSFV
ector5(length(TSFVector5))+DurationVector5(length(DurationVector5))+TSFVecto
r6(length(TSFVector6))+DurationVector6(length(DurationVector6))+ 
TSFVector7(length(TSFVector7))+DurationVector7(length(DurationVector7))+TSFV
ector8(length(TSFVector8))+DurationVector8(length(DurationVector8))+TSFVecto
r9(length(TSFVector9))+DurationVector9(length(DurationVector9))+ 
TSFVector10(length(TSFVector10))+DurationVector10(length(DurationVector10))+ 
TSFVector11(length(TSFVector11))+DurationVector11(length(DurationVector11))+ 
TSFVector12(length(TSFVector12))+DurationVector12(length(DurationVector12))+ 
TSFVector13(length(TSFVector13))+DurationVector13(length(DurationVector13))+
3000; 
 
 TSFVector15= 
TSFVector15+TSFVector1(length(TSFVector1))+DurationVector1(length(DurationVe
ctor1))+TSFVector2(length(TSFVector2))+DurationVector2(length(DurationVector
2))+TSFVector3(length(TSFVector3))+DurationVector3(length(DurationVector3))+
TSFVector4(length(TSFVector4))+DurationVector4(length(DurationVector4))+TSFV
ector5(length(TSFVector5))+DurationVector5(length(DurationVector5))+TSFVecto
r6(length(TSFVector6))+DurationVector6(length(DurationVector6))+ 
TSFVector7(length(TSFVector7))+DurationVector7(length(DurationVector7))+TSFV
ector8(length(TSFVector8))+DurationVector8(length(DurationVector8))+TSFVecto
r9(length(TSFVector9))+DurationVector9(length(DurationVector9))+ 
TSFVector10(length(TSFVector10))+DurationVector10(length(DurationVector10))+ 
TSFVector11(length(TSFVector11))+DurationVector11(length(DurationVector11))+ 
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TSFVector12(length(TSFVector12))+DurationVector12(length(DurationVector12))+ 
TSFVector13(length(TSFVector13))+DurationVector13(length(DurationVector13))+ 
TSFVector14(length(TSFVector14))+DurationVector14(length(DurationVector14))+
3000; 
 
TSFVector16= 
TSFVector16+TSFVector1(length(TSFVector1))+DurationVector1(length(DurationVe
ctor1))+TSFVector2(length(TSFVector2))+DurationVector2(length(DurationVector
2))+TSFVector3(length(TSFVector3))+DurationVector3(length(DurationVector3))+
TSFVector4(length(TSFVector4))+DurationVector4(length(DurationVector4))+TSFV
ector5(length(TSFVector5))+DurationVector5(length(DurationVector5))+TSFVecto
r6(length(TSFVector6))+DurationVector6(length(DurationVector6))+ 
TSFVector7(length(TSFVector7))+DurationVector7(length(DurationVector7))+TSFV
ector8(length(TSFVector8))+DurationVector8(length(DurationVector8))+TSFVecto
r9(length(TSFVector9))+DurationVector9(length(DurationVector9))+ 
TSFVector10(length(TSFVector10))+DurationVector10(length(DurationVector10))+ 
TSFVector11(length(TSFVector11))+DurationVector11(length(DurationVector11))+ 
TSFVector12(length(TSFVector12))+DurationVector12(length(DurationVector12))+ 
TSFVector13(length(TSFVector13))+DurationVector13(length(DurationVector13))+ 
TSFVector14(length(TSFVector14))+DurationVector14(length(DurationVector14))+ 
TSFVector15(length(TSFVector15))+DurationVector15(length(DurationVector15))+
3000; 
TSFVectorWIFI=[TSFVector1 TSFVector2 TSFVector3 TSFVector4 TSFVector5 
TSFVector6 TSFVector7 TSFVector8 TSFVector9 TSFVector10 TSFVector11 
TSFVector12 TSFVector13 TSFVector14  TSFVector16 ]; 
 
 
 
 
 


