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 1

INTRODUCTION 
 

Dynamic Spectrum Access (DSA) constitutes a set of approaches to spectrum reform. 

The main motivations behind DSA are inefficient regulatory regime currently in use 

and the physic limits on the spectrum useful for mobile terrestrial communications. 

Despite other model available, the hierarchical access model has been receiving 

particular attention because it allows to Primary Users and Secondary Users: the 

former correspond to incumbent, legacy services that have regulatory right to use one 

or more spectrum pools, while the latter are envisioned as cognitive device aimed 

and exploiting idle spectrum opportunities without harming incumbent 

communications. Under this model, one can rely on spectrum underlay, i.e., Ultra 

Wide Band Communications, or Opportunistic Spectrum Access (OSA). OSA is the 

approach of choice in this project because it represents an important application 

scenario for cognitive radio, which empowers secondary users with spectrum sensing 

capabilities. In particular, to render feasible the exploitation of TV white spaces the 

IEEE 802.22 working group is working towards the standardization of Wireless 

Regional Area Networks. License holders to TV bands have priority access to 

spectrum and are referred to as Primary Users. Wireless Regional Area Networks are 

allowed to operate in overlay with Primary Users provided that they make use of TV 

white spaces on a non-interfering basis. 

This work of thesis is concerned with the settings that a Wireless Regional Area 

Networks needs perform to comply with the 802.22’s functional requirements. 

Emphasis is put on the mandatory application of Dynamic Frequency Selection 

improved with Cognitive Radio and Cooperative Spectrum Sensing. 

A cognitive radio can understand the context it finds itself in and autonomously 

configure itself in response to a set of goals. Though other methods are available, 

cognitive radios usually perform sensing tasks to determine whether spectrum is 

occupied. Nevertheless, an individual cognitive radio has to cope with fading, 

shadowing, and penetration losses. These local detection issues can be mitigated by 

using cooperative spectrum sensing, in which the Wireless Regional Area Networks 
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base station and its served customer premise equipment share sensing information to 

get a more accurate picture of current spectrum occupancy. 

The design of sensing mechanisms for Wireless Regional Area Networks has aroused 

considerable research interest. Most approaches proposed have been based on the 

enforcement of quiet periods, during which all transmissions cease and focus is 

placed on spectrum sensing. The current 802.22 standard draft adopts a two-stage 

sensing mechanism, whose key aspect is the trade-off between sensing accuracy and 

data rate. In the first stage, short quiet periods can be used with minimal degradation 

of the Wireless Regional Area Networks data rate. The second stage involves one 

long quiet period, scheduled only if a larger number of samples is needed to improve 

sensing accuracy. The Two Stage Sensing mechanism being considered for 

standardization is an enhanced version of the C-MAC protocol. However, the 

emphasis has been put on Single-Stage Sensing with arbitrary allocation and duration 

of quiet periods. It has been suggested that it is possible to determine the optimum 

duration of quiet periods, i.e., the optimum sensing time, in the sense that the average 

data rate can be maximized. This issue has been formulated as an optimization 

problem and solved using numerical optimization. Though the optimization of the 

duration of quiet periods has been treated in a rather complete fashion, the literature 

for Wireless Regional Area Networks still have not managed to bring together all 

relevant criteria, e.g., the 802.22 MAC structure, DFS timing requirements, 

characteristics of the TV channel, mandatory sensitivity according to primary user 

type, benefits and drawbacks from Cooperative Spectrum Sensing. 

In generally, there are three major spectrum sensing methods, including matched 

filter, energy detection and feature detection. In this work, we consider the most 

common and simplest method: Energy Detector. 

The rest of the thesis is organized as follows. The Cognitive Radio Technology, the 

Dynamic Spectrum Access and Spectrum Sensing Methods are described in Chapters 

1, 2 and 3, respectively. In Chapter 4 system parameters of energy detector and their 

relationship to each other are analyzed. To do this we consider a less complex 

spectrum sensing methods, in which do not to rely on quiet periods. Then, the 

optimization of sensing period in Local and Cooperative Spectrum Sensing is 

investigate in Chapters 5 and 6, respectively. 
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Chapter 1 

COGNITIVE RADIO TECHNOLOGY 

 

The proliferation of wireless communication services caused a concurrent increase in 

the demand for and congestion of radio frequency (RF) spectrum. This congestion 

put a premium on the cost of spectrum and has created a battle between the public, 

private, and military sectors over frequency ownership. Studies have shown, however, 

that spectral utilization is relatively low when examined not just by frequency 

domain, but across the spatial and temporal domains. 

In November 2002, the Federal Communications Commission (FCC) published a 

report prepared by the Spectrum-Policy Task Force, aimed at improving the way in 

which this precious resource is managed in United States. The spectrum allocation 

chart used by the Federal Communications Commission is show in figure 1 and it 

seems to indicate a high degree of utilization. 

 

 
Figure 1: FCC spectrum allocation chart 
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However, the FCC Spectrum Policy Task Force reported vast temporal and 

geographic variation in the usage of the allocated spectrum with use ranging from 

15% to 85% in the bands below 3 GHz that are favoured in non-line-of-sight radio 

propagation, as show in the following figure. 

 

 
Figure 2: Spectrum utilization 

 

Indeed, scanning portions of the radio spectrum, we would find that [1,2]: 

 

 some frequency bands in the spectrum are largely unoccupied most of the 

time; 

 some other frequency bands are only partially occupied; 

 the remaining frequency bands are heavily used 

 

The underutilization of the electromagnetic spectrum leads to think in terms of 

Spectrum Holes [1]: 

“A spectrum holes is a band of frequencies assigned to a primary user, at a 

particular time and specific geographic location, the band is not being utilized by 

that user”. 
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Figure 3: Spectrum Holes 

 

Although the static spectrum assignment policy generally worked well in the past, 

there are been a dramatic increase in the access to limited spectrum to mobile 

services and applications in the recent years. The limited available spectrum due to 

the nature of radio propagation and the need for more efficiency in the spectrum 

usage necessitates a new communication paradigm to exploit the existing spectrum 

opportunistically. Inspired by the successful global use of multi-radio co-existing at 

2.4 GHz unlicensed ISM bands and other, dynamic spectrum access is proposed as a 

solution to problems of current inefficient spectrum usage. The inefficient usage of 

the existing spectrum can be improved through opportunistic access to the licensed 

bands by existing users. 

The key enabling technology of dynamic spectrum access is Cognitive Radio (CR) 

technology, which provides the capacity to share the wireless channel with the 

licensed users in an opportunistic way. 
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1.1 From Software Defined Radio to Cognitive Radio 

 

Many different wireless communication systems exist and they are widely used for 

different purpose and application scenarios. As show in Figure 1, there are some 

popular wireless communications international standards, ranging from body area 

networks, personal area networks, local area networks and metropolitan area 

networks, to wide area networks, with different applications scenarios and optimised 

system parameters. As a matter of fact, for the cellular type system alone, there are a 

variety of system in use, such as legacy GSM, GPRS and EDGE, 3GPP wideband 

code division multiple access (WCDMA) with its update versions of HSDPA and 

HSUPA, and the upcoming 3GPP long-term evolution (LTE), and that is just 

considering air-interface technology. 

 

 
Figure 4: Global wireless communication standards 

 

All these air-interface technology may co-exist in different geographical regions, and 

may co-exist simultaneously at the same location. So, a flexible realisation of 

terminal devices to allow users to appropriately use wireless communications is 

definitely essential. 
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Since the early days of electronic communication, however, typical (wireless) 

communication system have been implemented by certain dedicated hardware and 

likely dedicated application specific integrated chips (ASIC) based on specific 

system parameters designed for use. Progress in digital processing technology has 

led to a new concept, know as Software Defined Radio (SDR), in which the radio 

functions are defined by software. 

A rigorous definition of the concept of Software Defined Radio does not yet exist. 

Some definitions often found in the literature [3]: 

 

 Flexible TX / RX architecture, controlled and programmable by software; 

 Signal processing able to replace the radio functionality; 

 Software realization of terminals “multiple mode/standard”; 

 "Air interface downloadability": radio equipment dynamically reconfigurable 

by downloadable software at every level of the protocol stack; 

 Transceiver where the following can be defined by software: 

o Frequency band and radio channel bandwidth; 

o Modulation and coding scheme; 

o Radio resource and mobility management protocols; 

o User applications. 

These parameters can be adapted and changed by the network operator, the 

service provider or the final user. 

 

In summary, the following definition could be used: 

 

"Software Defined Radio is an emerging technology, thought to build flexible radio 

systems, multi service, multiband, reconfigurable and reprogrammable by software". 

 

Another definition was proposed by Wireless Innovation Forum, working in 

collaboration with the Institute of Electrical and Electronic Engineers (IEEE) 

P1900.1 group [4]: 
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“Software Defined Radio is a Radio in which some or all physical layer functions are 

software defined”. 

 

This opens the possibility of defining, in software, the typical functions of a radio 

interface which is usually implemented by dedicated hardware in the transmit and 

receive equipment. In other words, SDR is a collection of hardware and software 

technologies that enable reconfigurable system architectures. Indeed, some or all of 

the radio’s operating functions (also referred to as physical layer processing) are 

implemented through modifiable software or firmware operating on programmable 

processing technologies. These devices include field programmable gate arrays 

(FPGA), digital signal processors (DSP), general purpose processors (GPP), 

programmable System on Chip (SoC) or other application specific programmable 

processors. The use of these technologies allows new wireless features and 

capabilities to be added to existing radio systems without requiring new hardware. 

SDR provides an efficient and comparatively inexpensive solution to the challenge of 

building multi-mode, multi-band, multi-functional wireless devices that can be 

adapted, updated, or enhanced by using software upgrades. 

The SDR concept can also be used to implement mobile terminals and base stations. 

In the case of mobile terminals, the SDR concept enables them to adapt dynamically 

to the local radio environment. In the case of base stations, the SDR concept is aimed 

at configuring a common platform for a specific air interface by downloading the 

appropriate software. This can be done either during operation or as part of the 

production cycle. 

Users will benefit from the SDR system by having access to different networks and 

various air interfaces using a single terminal. Access will be possible to global 

networks, corporate networks and domestic networks. The user will also benefit from 

the downloading of services, features and applications. As a result of the terminal’s 

flexibility, it provides continuity of service when the transmission standards change 

in the coverage area. 

SDR puts the service provider in the position of being able to offer attractive new 

services and features “on the fly”. The consequences will be a significant 

improvement in service quality, increased traffic and more revenue. 
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The software radio concept should also be regarded as a way of making users, 

service providers and manufacturers more independent of standards. The benefits of 

this approach are that air interfaces may, in principle, be tailored to the needs of a 

particular service for a particular user in a given environment at a given time. 

 

The concept of Cognitive Radio (CR) emerged as an extension of SDR technology. 

In particular, a Cognitive Radio is an SDR that additionally senses its environment, 

tracks changes, and reacts upon its findings. 

Experts agree that a CR device should have the following characteristics: 

 

 aware of its environment; 

 capable of altering its physical behaviour to adapt to its current environment; 

 learns from previous experiences; 

 deals with situations unknown at the time of the radio’s design. 

 

 
Figure 5: Traditional Radio, Software Radio (SDR) and Cognitive Radio 

 

A precious definition of Cognitive radio does not yet exist. Indeed, while many 

researchers and public officials agree that upgrading a software radio’s control 

processes will add significant value to software radio, there is currently some 
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disagreement over how much “cognition” is needed which results in disagreement 

over the precise definition of a cognitive radio. 

 

The term “Cognitive Radio” was coined by Joseph Mitola III in an article published 

in 1999 [5]. He defines the Cognitive Radio as “A radio that employs model based 

reasoning to achieve a specified level of competence in radio-related domains”. 

 

Then, in his publication [6] Haykin defines a cognitive radio as “An intelligent 

wireless communication system that is aware of its surrounding environment (i.e., 

outside world), and uses the methodology of understanding-by-buildig to learn from 

the environment and adapt its internal states to statistical variations in the incoming 

RF stimuli by making corresponding changes in certain operating parameters (e.g., 

transmit-power, carrier-frequency, and modulation strategy) in real time, with two 

primary objectives in mind: highly reliable communications whenever and wherever 

needed; efficient utilization of the radio spectrum”.  

 

Another definitions was proposed by IEEE USA, FCC and IEEE 1900.1 group. The 

IEEE USA offered the following definition [7]: “A radio frequency 

transmitter/receiver that is designed to intelligently detect whether a particular 

segment of the radio spectrum is currently in use, and to jump into (and out of, as 

necessary) the temporarily-unused spectrum very rapidly, without interfering with 

the transmissions of other authorized users”. 

 

After two years, FCC defined the Cognitive Radio as [8] ”a radio that can change its 

transmitter parameters based on interaction with the environment in which it 

operates”. 

 

The IEEE tasked the IEEE 1900.1 group to define cognitive radio which has the 

following working definition: “A type of radio that can sense and autonomously 

reason about its environment and adapt accordingly. This radio could employ 

knowledge representation, automated reasoning and machine learning mechanisms 

in establishing, conducting, or terminating communication or networking functions 
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with other radios. Cognitive radios can be trained to dynamically and autonomously 

adjust its operating parameters.” 

 

These is some of many definitions proposed for cognitive radio, but all of these 

assume that cognition will be implemented as a control process, presumably as part 

of a Software Defined Radio. Second, all of the definitions at least imply some 

capability of autonomous operation. Finally, the following are some general 

capabilities found in all of the definitions: 

 

 Observation: whether directly or indirectly, the radio is capable of acquiring 

information about its operating environment; 

 Adaptability: the radio is capable of changing its waveform1; 

 Intelligence: the radio is capable of applying information towards a 

purposeful goal. 

 

So, a mobile terminal with cognitive radio capabilities can sense the communication 

environments (e.g. spectrum holes, geographic location, available wire/wireless 

communication system or networks, available services), analyze and learn 

information from the environments with user’s preferences and demands, and 

reconfigure itself by adjusting system parameters conforming to certain policies and 

regulations. 

 

 

                                                 
1 Waveform: a protocol that specifies the shape o fan electromagnetic signal intended for 
transmission by radio. 
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1.2 Cognition Cycle 

 

As shown in the previous section, there are some differences in the definitions for 

CR, and they can be largely attributed to differences in the expectations of the 

functionality that a CR will exhibit. In his dissertation [10], J. Mitola III considers 

the nine levels of increasing cognitive radio functionality, ranging from a software 

radio to a complex self-aware radio, as show in Table 1. 

 

Level Capability Task Characteristic 

0 Pre-programmed The radio has no model-based reasoning capability (SDR) 

1 Goal-driven Goal-driven choice of RF band, air interface, and protocol 

2 Context Awareness 
Infers external communications context (minimum user 

involvement) 

3 Radio Aware Flexible reasoning about internal and network architectures 

4 Capable of Planning Reasons over goals as a function of time, space, and context 

5 
Conducts 

Negotiations 
Expresses arguments for plans/ alternatives to user, peers, networks 

6 Learns Fluents Autonomously determines the structure of the environment 

7 Adapts Plans Autonomously modifies plans as learned fluents change 

8 Adapts Protocols Autonomously proposes and negotiates new protocols 
 

Table 1: Level of Cognitive Radio functionality [10] 

 

Furthermore, if the radio is to be aware, it must interact with the outside world. As a 

reference for how a Cognitive Radio could achieve these levels of functionality and 

how it may interact with the environment is accomplished via the cognition cycle 

(Figure 5). 
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Figure 6: Cognition Cycle 

 

In the cognition cycle, a radio receives information about its operating environment 

(Outside world) through direct observation or through signaling. 

This information is then evaluated (Orient) to determine its importance. Based on 

this valuation, the radio determines its alternatives (Plan) and chooses an alternative 

(Decide) in a way that presumably would improve the valuation. Assuming a 

waveform change was deemed necessary, the radio then implements the alternative 

(Act) by adjusting its resources and performing the appropriate signaling. These 

changes are then reflected in the interference profile presented by the cognitive radio 

in the Outside world. As part of this process, the radio uses these observations and 

decisions to improve the operation of the radio (Learn), perhaps by creating new 

modeling states, generating new alternatives, or creating new valuations. 

 

In other words, a Cognitive Radio behaves according to five main actions: 

 

 OBSERVE: CRs are aware of their surrounding environment; 

 PLAN: CRs evaluate among several strategies 

 DECIDE: CRs are always capable to select one strategy of operation; 
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 LEARN: CRs can enrich experience by forming new strategies; 

 ACT: CRs perform communication according to the selected strategy. 

 

As the learning process can be quite cycle intensive and is not necessary for many of 

the envisioned applications and as artificial intelligence is not yet ripe for 

deployment, many researchers have assumed lower levels of functionality in their 

cognitive radio. For instance, in his remarks at the 2005 MPRG Technical 

Symposium, Bruce Fette, Chief Scientist at General Dynamics Decision Systems, 

noted that many members of the defence community refer to the cognition cycle as 

the “OODA” loop – emphasizing only the observation, orientation, decision, and 

action portions cognition cycles. Even the source of the most expansive 

interpretation of cognitive radio [10] suggests that learning would occur during sleep 

or “prayer” (insight gained from external entities) epochs and that during wake 

epochs the cognitive radio would primarily operate as an OODA loop augmented by 

some light planning capabilities. 

 

 



 15

1.3 The Capability of Cognitive Radios 

 

The capabilities of Cognitive Radios as node of Cognitive Radio Network can be 

classified according to their functionalities based on the definition of cognitive radio. 

A CR shall the environment (cognitive capability), analyse and learn sensed 

information (self-organised capability) and adapt to environment (reconfigurable 

capabilities. 

 

 

1.3.1 Cognitive Capability 
 

Cognitive capability refers to the ability of the radio technology to capture or sense 

the information from its radio environment. This capability cannot simply be realized 

by monitoring the power in some frequency band of interest but more sophisticated 

techniques are required in order to capture the temporal and spatial variations in the 

radio environment and avoid interference to other users. Through this capability, the 

portions of the spectrum that are unused at a specific time or location can be 

identified. Consequently, the best spectrum and appropriate operating parameters can 

be selected. 

The task required for adaptive operation in open spectrum [6] are shown in Figure 7, 

which is referred to as Cognitive Cycle. 
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Figure 7: Cognitive Cycle 

 

 Spectrum sensing: a CR monitors the available spectrum bands, and then 

detect spectrum holes. It could incorporate a mechanism that would enable 

sharing of the spectrum under the terms of an agreement between a licensee 

and third party. 

 Spectrum analysis: The characteristics of the spectrum holes that are detected 

through spectrum sensing are estimated. 

 Spectrum decision: a CR determines the data rate, the transmission mode, and 

the bandwidth of the transmission. Then, the appropriate spectrum band is 

chosen according to the spectrum characteristics and user requirements. 

 Location identification: location identification is the ability to determine its 

location and the location of other transmitter, and then select the appropriate 

operating parameters such as the power and frequency allowed at its location. 

In bands as those used for satellite (receive-only), location technology may be 

an appropriate method of avoiding interference because sensing technology 

would not be able to identify the locations of nearby receivers. 

 Network/system discovery: For a cognitive radio terminal to determine the 

best way to communicate, it shall first discover available networks around it. 

These networks are reachable either via directed one hop communication or 

via multi-hop relay nodes. The ability to discovery one hop or multi-hop 

away access networks is important. 
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 Service discovery: service discovery usually accompanies with 

network/system discovery. Network or system operators provide their 

services through their access networks. A cognitive radio terminal shall find 

appropriate services to fulfill its demands. 

 

 

1.3.2 Reconfigurable Capability 
 

Reconfigurability is the capability of adjusting operating parameters for the 

transmission on the fly without any modifications on the hardware components. This 

capability enables the cognitive radio to adapt easily to the dynamic radio 

environment. 

 

 Frequency agility: It is the ability of a radio to change its operating frequency. 

This ability usually combines with a method to dynamically select the 

appropriate operating frequency based on the sensing of signals from other 

transmitters or on some other method. 

 Dynamic Frequency Selection: this is defined in the rules as a mechanism that 

dynamically detects signals from other radio frequency systems and avoids 

co-channel operation with those systems. The methods that a device could 

use to decide when to change frequency or polarization could include 

spectrum sensing, geographic location monitoring, or an instruction from a 

network or another device. 

 Adaptive Modulation/Coding: it can modify transmission characteristics and 

waveforms to provide opportunities for improved spectrum access and more 

intensive use of spectrum while “working around” other signals that are 

present. A cognitive radio could select the appropriate modulation type for 

use with a particular transmission system to permit interoperability between 

systems. 
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 Transmit Power Control: this is a feature that enables a device to dynamically 

switch between several transmission power levels in the data transmission 

process. It allows transmission at the allowable limits when necessary, but 

reduces the transmitter power to a lower level to allow greater sharing of 

spectrum when higher power operation is not necessary. 

 Dynamic System/Network Access: for a cognitive radio terminal to access 

multiple communication systems/networks which run different protocols, the 

ability to reconfigure itself to be compatible with these systems is necessary. 

 

The transmission parameters of a cognitive radio can be reconfigured not only at the 

beginning of a transmission but also during the transmission. According to the 

spectrum characteristics, these parameters can be reconfigured such that the 

cognitive radio is switched to a different spectrum band, the transmitter and receiver 

parameters are reconfigured and the appropriate communication protocol parameters 

and modulation schemes are used. 

 

 

1.3.3 Self-organised Capability 
 

Cognitive radios should be able to self-organise their communication based on 

sensing and reconfigurable functions. 

 

 Spectrum/Radio Resource Management: to efficiently manage and organize 

spectrum holes information among cognitive radios, good spectrum 

management scheme is necessary. 

 Mobility and Connection Management: due to the heterogeneity of CRNs, 

routing and topology information is more and more complex. Good mobility 

and connection management can help neighborhood discovery, detect 

available Internet access and support vertical handoffs, which help cognitive 

radios to select route and networks. 
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 Trust/Security Management: since CRNs are heterogeneous networks in 

nature, various heterogeneities (e.g. wireless access technologies, 

system/network operators) introduce lots of security issues. Trust is thus a 

prerequisite for securing operations in CRNs. 
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Chapter 2 

DYNAMIC SPECTRUM ACCESS 

 

The underutilization of spectrum as revealed by extensive measurements of actual 

spectrum usage has stimulated exciting activities in the engineering, economics, and 

regulation communities in searching for better spectrum management policies and 

techniques. Hence, in the opposite to the current static spectrum management policy, 

the term Dynamic Spectrum Access was coined. 

As show in the following figure, dynamic spectrum access strategies can be broadly 

categorized under three models. 

 

 
Figure 8: Dynamic Spectrum Access 
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2.1 Dynamic Exclusive Use Model 

 

This model maintains the basic structure of the current spectrum regulation policy: 

spectrum bands are licensed to services for exclusive use. The main idea is to 

introduce flexibility to improve spectrum efficiency. Two approaches have been 

proposed under this model [3]: 

 

1. Spectrum Property Rights: it allows licensees to sell and trade spectrum and 

to freely choose technology. Economy and market will thus play a more 

important role in driving toward the most profitable use of this limited 

resource. Note that even though licensees have the right to lease or share the 

spectrum for profit, such sharing is not mandated by the regulation policy [1] 

[2]. 

2. Dynamic Spectrum Allocation: it aims to improve spectrum efficiency 

through dynamic spectrum assignment by exploiting the spatial and temporal 

traffic statistics of different services. In other words, in a given region and at 

a given time, spectrum is allocated to services for exclusive use. This 

allocation, however, varies at a much faster scale than the current policy [3] 

[4]. 

 

Based on a exclusive-use model, these approaches cannot eliminate white space in 

the spectrum resulting from the bursty nature of wireless traffic. 
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2.2 Open Sharing Model 

 

This model is also referred as Spectrum Commons and it employs open sharing 

among peer users as the basis for managing a spectral region. Advocates of this 

model draw support from the phenomenal success of wireless services operating in 

the unlicensed industrial, scientific, and medical (ISM) radio band (e.g., WiFi). 

Centralized, and distributed spectrum sharing strategies have been initially 

investigated to address technological challenges under this spectrum management 

model. 

 

2.3 Hierarchical Access Model 

 

Built upon a hierarchical access structure with primary and secondary users, this 

model can be considered as a hybrid model of the above two. The basic idea is to 

open licensed spectrum to secondary users and limit the interference perceived by 

primary users. 

Two approaches to spectrum sharing between primary and secondary users have 

been considered: Spectrum Underlay and Spectrum Overlay. 

 

 

2.3.1 Spectrum Underlay 
 

In an Underlay System, regulated spectral mask impose stringent limits on radiated 

power of secondary users as a function of frequency. Hence, secondary users must 

operate below the noise floor of primary users. 

Radios coexist in the same band with primary licensees, but are regulated to cause 

interference below prescribed limits. For example, a low-powered radio could 

coexist in the same frequency channel with a high-powered broadcast radio. An 

example is the UWB communication that uses a spreading transmitted signals over a 
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wide frequency band. Hence, the secondary users can potentially achieve short-range 

high data rate with extremely low power transmission power, as show in the 

following figure. 

 

 
Figure 9: Example of Spectrum Underlay 

 

The problem is the following: if primary users transmit all the time, this approach 

doesn’t rely on detection and exploitation of spectrum white space. 

 

 

2.3.2 Spectrum Overlay 
 

Spectrum overlay was first envisioned by Mitola under the term “Spectrum Pooling” 

and later investigated by the DARPA XG program under the term “Opportunistic 

Spectrum Access (OSA)”. 

In opposite to Spectrum Underlay, this approach doesn’t necessarily impose severe 

conditions on the power transmission of secondary users, but rather on where on 

when they may transmit. The scope of this approach is to target the spatial and 

temporal white space by allowing to permit to secondary users to identify and exploit 

local and instantaneous spectrum availability in a non intrusive manner. 
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Figure 10: Example of Spectrum Overlay 

 

Compared to the Dynamic Exclusive Use and Open Sharing models, this hierarchical 

model is perhaps the most compatible with the current spectrum management 

policies and legacy wireless systems. Furthermore, the underlay and overlay 

approaches can be employed simultaneously to further improve spectrum efficiency. 

Hence, we focus on this model, in particular on the Opportunistic Spectrum Access. 
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2.4 Opportunistic Spectrum Access 

 

Spectrum Overlay, or Opportunistic Spectrum Access (OSA), can be applied in 

either temporal or spatial domain. In the former, secondary users aim to exploit 

temporal spectrum opportunities resulting from the bursty traffic of primary users. In 

the latter, secondary users aim to exploit frequency bands that are not used by 

primary users in a particular geographic area. A typical application is the reuse of 

certain TV-bands that are not used for TV broadcast in a particular region. In the TV 

broadcast system, TV-bands assigned to adjacent regions are different to avoid co-

site interference. 

Basic components of OSA include: 

 

 Spectrum Opportunity Identification: this module is responsible for 

accurately identifying and intelligently tracking idle frequency bands that are 

dynamic in both time and space. It is crucial to OSA in order to achieve non 

intrusive communication 

 Spectrum Opportunity Exploitation: this module takes input from the 

opportunity identification module and decides whether and how a 

transmission should take place. 

 Regulatory Policy: it defines the basic etiquette for secondary users to ensure 

compatibility with legacy systems. 

 

To illustrate the basic technical issue in OSA, we can consider the following example 

of OSA network. We can consider a spectrum consisting of N channels, and these are 

allocated to a network of primary users. Channel can be a frequency band with 

certain bandwidth, a collection of spreading codes in a CDMA network, or a set of 

tones in an OFDM system. Furthermore, we assume that cross-channel interference 

is negligible. Thus, a secondary user transmitting over an available channel does not 

interfere with primary users using other channels. 

The N channels are allocated to a network of primary users and we assume that the 

primary system uses a synchronous slot structure, although the basic ideas apply 
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more generally. The traffic statistic of the primary system are such that the 

occupancy of these N channels follows a Markov process with 2N states, where the 

state is defined as the availability (idle or busy) of each channel. Hence, with this 

model of primary network, a secondary users seek spectrum opportunities in these N 

channels independently. In each slot, a secondary user choose a channel to sense and 

decides whether to access based on imperfect sensing outcomes. 

In the following sections we analyse the basic components of OSA, but before a 

definition of Spectrum Opportunity is necessary. 

 

 

2.4.1 Definition of Opportunity 
 

Intuitively, a channel can be considered as an opportunity if it is not currently used 

by primary users. As show in the following figure, we have different resources that 

can be considered as opportunity, i.e., some resources are frequency, time, 

geographical space, code. 

 

 
Figure 11: example of Spectrum Opportunities 
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For example, with the help of next figure where A is the transmitter and B its 

intended receiver, we identify conditions for a channel to be considered as an 

opportunity. 

 

 
Figure 12: Illustration of spectrum opportunity 

 

In this case, a channel is an opportunity to A and B if they can communicate 

successfully over this channel while limiting the interference to primary users below 

a prescribe level. This means that A will not interfere with primary receivers and B 

will not be influenced by primary transmitters. Hence, if we consider a monotonic 

and uniform signal attenuation, and omni-directional antennas, a channel is an 

opportunity to A and B if no primary users are receiving within a distance rtx from A 

and no primary users are transmitting within a distance rrx from B. The distance rtx is 

determined by the transmission power of secondary user and the maximum allowable 

interference to primary users, while rrx is determined by the transmission power of 

primary users and the secondary user’s interference tolerance. So, the Spectrum 

Opportunity is a local concept defined with respect to a particular pair of secondary 

users, and it is determined by their position and by the communication activities of 

primary users. 
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Chapter 3 

SPECTRUM SENSING METHODS FOR 
COGNITIVE RADIO 

 

As has been pointed out in the previous sections, a Cognitive Radio has to be able to 

sense the environment over a wide portion of the spectrum and autonomously adapt 

to it since the Cognitive Radio does not have rights to any frequency bands. This task 

performed by Cognitive Radio is known as Spectrum Sensing [1, 2, 3] (or Spectrum 

Monitoring [4, 5]). Generally speaking, Spectrum Sensing in wireless 

communications is one of the most challenging tasks that a Cognitive Radio has to 

perform. Depending on the required level of automation and self-management 

capabilities, Spectrum Sensing has to provide to the Cognitive Radio different 

information in order to predict the radio spectrum utilization. For these reasons, in 

some applications, providing information only about the frequency usage would not 

be sufficient, and other characteristics about the portion of the spectrum under 

investigation have to be provided in order to predict the radio spectrum utilization 

(e.g. number of transmitted signals, carrier frequency, power, transmission technique, 

modulation, etc). In fact, prior knowledge about the transmitted signal and its 

parameters (e.g. carrier frequency, power, modulation, etc.) is usually not available. 

Moreover, received signals are corrupted by channel distortions (e.g. severe 

multipath fading), and spread spectrum transmission techniques are often used in 

order to obtain a low probability of interception. Hence, the goal of spectrum sensing 

is to decide between the following hypothesis: 

 

1. H0: Primary user is absent; 

2. H1: Primary user is present. 

 

in order to avoid the harmful interference to the primary system. This behavior is 

referred to as detecting free bands, which meaning is to identify frequency bands 
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which are free of already established communications. Free band detection can be 

illustrated as in the next figure. 

 

 
Figure 13: Free Band detector architecture 

 

Radio signal y(t) received at the antenna is first filtered on a bandwidth BL, then 

down converted to baseband digitized before being sent to the detector. Finally, a 

decision is made on whether the band BL should be considered as « free » or « 

occupied », based on this computation. 

In the following subsections a survey on these Spectrum Sensing techniques will be 

provided and advantages/disadvantage for the different approaches will be discussed. 

Before to start,  

 

 

3.1 Matched Filter 

 

Using a matched filter is the optimal solution to signal detection in presence of noise 

[6] as it maximizes the received Signal-to-Noise Ratio (SNR). It is a coherent 

detection method, which necessitates the demodulation of the signal, which means 

that cognitive radio equipment has the a priori knowledge on the received signal(s), 

e.g. order and modulation type, pulse shaping filter, data packet format, etc. Most 

often, telecommunication signals have well-defined characteristics, e.g. presence of a 

pilot, preamble, synchronization words, etc., that permit the use of these detection 

techniques. Based on a coherent approach, matched filter has the advantage to only 

require a reduces set of samples, function of O(1/SNR), in order to reach a 
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convenient detection probability [6]. If  nX  is completely known to the receiver 

then the optimal detector for this case is: 
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If γ is the detection threshold, then the number of samples required for optimal 

detection are 
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where dP  and fP are the probabilities of detection and false alarm respectively. 

Hence, the main advantage of matched filter is that thanks to coherency it requires 

less time to achieve high processing gain since only  1SNRO  samples are needed 

to meet a given probability of detection constraint. 

However, a significant drawback of a matched filter is that a cognitive radio would 

need a dedicated receiver for every signal it may have to detect. Thus in the case of 

multi-waveform detection, this approach is often not used. 

 

 

3.2 Energy Detector 

 

One approach to simplify matched filtering is to perform non-coherent detection 

through energy detection [6]. This sub-optimal technique has been extensively used 

in radiometry. Energy detection is a well known detection method mainly because of 

its simplicity. The basic functional method involves a squaring device, an integrator 

and comparator. 
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It can be implemented either in time domain or in frequency domain. Time domain 

implementation would require front-end filtering of the signal to be detected 

(primary signal) before the squaring operation. 

In frequency domain implementation, after front-end band-pass filtering, the received 

signal samples are converted to frequency domain samples using Fourier transform. 

Signal detection is then effected by comparing the energy of the signal samples 

falling within certain frequency band with that of a threshold value. 

The threshold value is an ambient noise power arising from the receiver itself and RF 

interference in the surrounding.  

Energy detection or radiometer method lies on a stationary and deterministic model 

of the signal mixed with a stationary white Gaussian noise with a known single-side 

power spectrum density 0 . A simplified diagram of a radio meter is shown in the 

next figure. 

 

 
Figure 14: Energy detector scheme 

 

To detect a weak primary signal confined inside some a priori known bandwidth B, 

one could pose as a binary hypothesis testing problem as follows: 
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where H0 represents the absence of the primary signal, i.e., the received baseband 

complex signal x(n) contains only additive white Gaussian noise (AWGN), and H1 

represents the presence of the primary signal, i.e., x(n) consists of a primary signal 

s(n) corrupted by v(n). Moreover, N corresponds to the number of available 

measurements. The signal is detect by comparing the output of the energy detector 

with a threshold which depends on the noise floor. Energy detection method is a non-
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coherent energy detector and one of simplest approach for deciding between two 

hypothesis: H0 and H1. 

Set x = [x(1),x(2),…,x(N)]T and s = [s(1),s(2),…,s(N)]T respectively the received 

signal and the primary signal vectors, the decision rules is given by 
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where T(x) is the test statistic and   is the corresponding test threshold. Although 

T(x) has a chi-square distribution, according to the central limit theorem T(x) is 

asymptotically normally distributed if N is a large enough. Specially, for large N, we 

can model the statistics of T(x) as follows: 
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where ps=||s||/N represents the average primary signal power. In this way, for large N, 

the Probability of False Alarm and the Probability of Detection, can be approximated, 

respectively, as 
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where Q(x) is the tail of a zero-mean unit variance Gaussian random variable, and 

it’s given by 
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Moreover, indicating with 
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the Signal-to-Noise Ratio, using relations of Probability of False Alarm and 

Probability of Detection, it is easy to see that in order to ensure a particular operation 

point (Pd, Pf), the required number of samples, N, is given by 
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Hence, in the large Signal-to Noise Ratio regime (i.e. SNR>>1) we conclude that 

O(1/SNR) samples are needed to meet the desired operation point (Pf, Pd), and 

O(1/SNR2) are needed in the low regime (i.e. SNR<<1). 

There are several drawbacks of energy detectors that might diminish their simplicity 

in implementation. First, a threshold used for primary user detection is highly 

susceptible to unknown or changing noise levels. Even if the threshold would be set 

adaptively, presence of any in-band interference would confuse the energy detector. 

Furthermore, in frequency selective fading it is not clear how to set the threshold 

with respect to channel notches. Second, energy detector does not 

differentiate between modulated signals, noise and interference. Since, it cannot 

recognize the interference, it cannot benefit from adaptive signal processing for 

cancelling the interferer. Furthermore, spectrum policy for using the band is 

constrained only to primary users, so a cognitive user should treat noise and other 

secondary users differently. Lastly, an energy detector does not work for spread 

spectrum signals: direct sequence and frequency hopping signals, for which more 

sophisticated signal processing algorithms need to be devised. In general, we could 



 36

increase detector robustness by looking into a primary signal footprint such as 

modulation type, data rate, or other signal feature. 

 

 

3.3 Cyclostationary Feature Detection 

 

An alternative method for the detection of primary signals is Cyclostationary Feature 

Detection [6]. Modulated signals are in general coupled with sine wave carriers, 

pulse trains, repeated spreading, hopping sequences, or cyclic prefixes which result 

in built-in periodicity. These modulated signals are characterized as cyclostationary 

because their mean and autocorrelation exhibit periodicity. This periodicity is 

introduced in the signal format at the receiver so as to exploit it for parameter 

estimation such as carrier phase, timing or direction of arrival. These features are 

detected by analyzing a spectral correlation function (SCF). The main advantage of 

this function is that it differentiates the noise from the modulated signal energy. This 

is due to the fact that noise is a wide-sense stationary signal with no correlation 

however modulated signals are cyclostationary due to embeddded redundancy of 

signal periodicity. Analogous to autocorrelation function, spectral correlation 

function can be defined as 
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where the finite time Fourier Transform is given by 
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A simplified diagram of a cyclostationary feature detectod is shown in the next figure 
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Figure 15:Implementation of a cyclostationary feature detector 

 

Unlike power spectrum density, which is real-valued one dimensional transform, the 

spectral correlation function is two dimensional transform, in general complex-

valued and the parameter α is called cycle frequency. Power spectral density (PSD) is 

a special case of a spectral correlation function for α=0. 

Because of the inherent spectral redundancy signal selectivity becomes possible. 

Analysis of signal in this domain retains its phase and frequency information related 

to timing parameters of modulated signals. Due to this, overlapping feature in power 

spectral density are non overlapping feature in cyclic spectrum. Hence different types 

of modulated signals that have identical power spectral density can have different 

cyclic spectrum. 

Because of all these properties cyclostationary feature detector can perform better 

than energy detector in discriminating against noise. However it is computationally 

complex and requires significantly large observation time. 
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Chapter 4 

PERFORMANCE ANALYSIS OF ENERGY 
DETECTOR: EPISODIC ENVIRONMENT 

 

This chapter is concerned with less complex spectrum sensing methods, which do not 

to rely on quiet periods. Therefore, secondary communications are not interrupted 

while sensing is performed. Since the choice of one action in each observation time 

does not depend on the previous one, the task environment 1 (ENV1) is assumed 

episodic. Under this assumptions we analyse the performance of the following 

sensing architectures: 

 

1. Local Spectrum Sensing (LSS); 

2. Distributed Spectrum Sensing (DSS). 

 

As we have seen in the previous chapter, the goal of Spectrum Sensing is to detect a 

weak primary signal confined inside some a priori known bandwidth B, one could 

pose as a binary hypothesis testing problem as follows: 
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   (1) 

 

where H0 represents the absence of the primary signal, i.e., the received baseband 

complex signal x(n) contains only additive white Gaussian noise (AWGN), and H1 

represents the presence of the primary signal, i.e., x(n) consists of a primary signal 

s(n) corrupted by v(n). In this work, we use the radiometer technique known as 

Energy Detection. It is the most common way of spectrum sensing because of its low 

computational and implementation complexities. In addition, it is more generic as 

receivers do not need any knowledge on the primary users’ signal. As seen, the 

Probabilities of False Alarm and Detection can be defined as follow: 
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respectively. It is easy to see that in order to ensure a particular operation point (Pd, 

Pf), the required number of samples, N, is given by 

 

     2211 212   SNRSNRPQPQN df   (4) 

 

As show in the next figure, in the large Signal-to Noise Ratio regime (i.e. SNR>>1) 

we conclude that O(1/SNR) samples are needed to meet the desired operation point 

(Pf, Pd), and O(1/SNR2) are needed in the low regime (i.e. SNR<<1). 
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Figure 16: Number of samples versus Signal-to-Noise Ratio (operation point: Pf=0.1, Pd=0.9) 
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4.1 Local Spectrum Sensing 

 

In this subsection we analyze the performance of Local Spectrum Sensing (LSS). In 

other words, we consider a single CR and it takes a decision independently by the 

other CRs, only with its environments observations. 

Performance of a detection algorithm can be summarized with two probabilities: 

Probability of Detection and Probability of False Alarm. Using relation of number of 

samples, it’s easy to see that the two previous probabilities are given by 
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Moreover, there is a third probability that we use in the next of this work, known as 

Probability of MisDetection. In particular this is the probability that sensing 

algorithm decides for spectrum busy when this is idle, and it’s given by 
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As show in the previous section, the number of samples required for a certain 

operation point (Pf, Pd) depends on SNR value, but how many time is necessary to 

collect these samples? Hence, first of all we analyze the number of samples as a 

function of SNR and we compute the Sensing Time as a function of the Number of 

Sample. Sensing Time is given by 
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B

N
T       (8) 

 

where N is the number of samples and B is the bandwidth. In this work we assume 

that B = 6MHz. Then we plot the Receiver Operating Characteristic (ROC) curves 

(Probability of Detection versus Probability of False Alarm) and the Complementary 

ROC curves (Probability of MisDetection versus Probability of False Alarm). 

 

 

4.1.1 Probability of Detection Versus Number of Samples 
 

In this section we analyze the number of sample required to guarantee a certain 

operation point (Pf, Pd). We consider a range of SNR from -20db to 20dB. In order to 

obtain a fit analysis, we divide the operation Signal-to Noise Ratio in three ranges: 

 

1. Low Range: 1020  SNR ; 

2. Medium Range: 55  SNR ; 

3. High Range: 2010  SNR . 

 

Moreover, value of the Probability of False Alarm is fixed to Pf=0.1. As show 

previously, the equation of the number of sample is given by (4) and is valid for a 

Number of Samples larger than 20. For this reason, we must consider the following 

graphics only for a large N, e.g., N>20. 

 

LOW RANGE 

We can see that the number of samples required increase with the decrease of Signal 

to Noise Ratio. In fact, for an operation point (Pf=0.9, Pd=0.1) and SNR=-20dB we 

need 1.3270e+005 samples and so 11.1msec to collected them. 

 



 43

0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Samples

P
ro

ba
bi

lit
y 

of
 D

et
ec

tio
n

 

 
SNR=-20 dB

SNR=-15 dB
SNR=-10 dB

 
Figure 17: Probability of Detection versus Number of Samples – Low SNR (Pf=0.1) 

 

MEDIUM RANGE 

As expected, when SNR increase the number of sample required decrease. In 

particular, with a with a value of SNR = 5 dB the number of samples necessary is 

0(1/SNR). Using equation (8), for a SNR = 0 dB and for an operation point (Pf=0.1, 

Pd=0.9), Sensing Time is T = 0.0020 ms. 
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Figure 18: Number of Samples versus Probability of Detection – Medium SNR (Pf=0.1) 
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HIGH RANGE 

In this case, we can show that the number of samples is under the threshold’s value 

(N>20). With a number of samples N>20 we achieve a high Probability of Detection, 

i.e., Pd=1. 
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Figure 19: Number of Samples versus Probability of Detection – High SNR(Pf=0.1) 

 

 

4.1.2 Probability of MisDetection Versus Number of 
Samples 

 

As for the Probability of Detection, we can compute the number of samples required 

to guarantee a certain Probability of MisDetection. In this case, we consider a fixed 

Probability of False Alarm (Pf = 0.1) and compute the Probability of MisDetection 

using the equation (7). Moreover, in order to obtain a fit analysis we use the same 

range defined above. 
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LOW RANGE 
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Figure 20: Probability of MisDetection versus Number of Samples – Low SNR (Pf=0.1) 

 

 

MEDIUM RANGE 
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Figure 21: Probability of MisDetection versus Number of Samples – Medium SNR (Pf=0.1) 
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HIGH RANGE 
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Figure 22: Probability of MisDetection versus Number of Samples – High SNR (Pf=0.1) 

 

 

4.1.3 Sensing Time 
 

In this subsection we analyze the sensing time required to collect the number of 

samples necessary for a certain operation point according with equation (8). In this 

analysis we consider a fixed Probability of False Alarm (Pf=0.1) and a variable 

Probability of Detection. In this way, we can see how the SNR values influence on 

the Sensing Time. Since we know that an higher number of samples are required for 

low SNR, we consider this value from -23dB to -10dB. The result is shown in the 

following figure. 

 



 47

-24 -22 -20 -18 -16 -14 -12 -10
0

10

20

30

40

50

60

70

80

90

Signal-to-Noise Ratio (dB)

S
en

si
ng

 T
im

e 
(m

s)

 

 
Pd=0.7

Pd=0.8
Pd=0.9

 

 

We can see that below a SNR=-20dB the detection becomes progressively harder and 

at -23dB signal cannot be detect regardless of the sensing time duration. Logically, 

the Time Sensing required depends by the operation point. As shown in the next 

figure, we can define a SNRwall, below of this the detection become “impossible” in 

terms of Sensing Time. 
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4.1.4 Receiver Operation Characteristic 
 

In this section we want analyse the probability of Detection as function of Probability 

of False Alarm by varying SNR, it is called the Receiver Operation Characteristics 

(ROC). Using this curves, it’s possible to determine the performance of a particular 

application. In other words, fixed the values of SNR and Pf  we can determine the 

respective value of Probability of Detection. 

Since we have seen that Probability of Detection depends on Number of Samples, we 

consider the Medium Range of SNR: ( 55  SNR ): using equation (8) and an 

operation point (Pf = 0.1, Pd = 0.9) we obtain N=24 (SensingTime = 0.0204 ms). 

The result is shown in the following figure. 
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Figure 23: ROC – Probability of Detection versus Probability of False Alarm 

 

If the Probability of False Alarm and Probability of Detection increase 

simultaneously and if the SNR is greater that -5dB, regardless of the Probability of 

False Alarm the energy detector is optimum. 
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4.1.5 Complementary Receiver Operation Characteristic 
 

In this section we want analyse the Probability of MisDetection as function of 

Probability of False Alarm, hence the Complementary Receiver Operation 

Characteristic. As done for ROC curves we consider the Medium Range: 

( 55  SNR ) and so a number of Samples N=24. Using equation (7) we obtain the 

following curves. 
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Figure 24: ComplementaryROC: Probability of MisDetection versus Probability of False Alarm 
 

As expected, the Probability of MisDetection assumes very small values when the 

Probability of False Alarm is near to 1. Indeed, since Probability of False Alarm is 

very close to 1, the Probability of Detection is nearly 1, as shown by ROC curves. 
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4.1.6 Behaviour in SNR 
 

The goal of this section is to analyze the behaviour of Energy Detection method in 

function of Signal-to-Noise Ratio. In other words we want understand how the value 

of SNR influences the performance of detection. The following analysis is divided in 

two parts, each of which involve both the Probability of Detection and the 

Probability of MisDetection. The first covers the analysis of these probability for a 

fixed Probability of False Alarm and for a variable Number of Samples. Instead, in 

the second the Number of Samples is set a variable Probability of False Alarm is 

considered. Furthermore, since the Number of Samples depends on the value of SNR, 

we consider separately the three ranges defined above. 

 

 

4.1.6.1 Probability of Detection versus Signal to Noise Ratio 
 

I CASE 
 
In this case we consider a fixed Probability of False Alarm and a variable Number of 

Samples. In particular we consider 

 
 Probability of False Alarm: Pf=0.1 

 Number of Samples: N=[5,15,50,100,500,1000]. 
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Figure 25: Probability of Detection versus SNR (fixed Pf = 0.1) 

 

As expected, the Probability of Detection increase with the SNR. Moreover, we can 

see that, for a fixed value of SNR, this probability increase with the number of 

samples. 

 

II CASE 
 

In this second case we want analyse the Probability of Detection as function of SNR 

for a variable Probability of False Alarm. Since we have seen that Probability of 

Detection depends by Number of Samples, we consider three different ranges an so 

three different values of Number Samples. As in the “Number of Samples versus 

Probability of Detection” section, the three ranges are: 

 

1. Low Range ( 1020  SNR ): N=3000 (SensingTime = 1.1293 ms); 

2. Medium Range: ( 55  SNR ): N=24 (SensingTime = 0.0204 ms); 

3. High Range: ( 2010  SNR ): N=2 (SensingTime = 0.02 µs). 

 

All values are computed for an operation point (Pf=0.1, Pd=0.9) and the medium 

values of SNR of each range. 
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Figure 26: Probability of Detection versus SNR (Low SNR range, fixed N = 3000) 
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Figure 27: Probability of Detection versus SNR (Medium SNR range, fixed N = 24) 
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Figure 28: Probability of Detection versus SNR (High SNR range, fixed N = 2) 

 

Previous figures show that the Probability of Detection increase when Probability of 

False Alarm also increase. Moreover, the performance of energy detector is excellent 

when the SNR is greater than -5 dB. 

 

 

4.1.6.2 Probability of MisDetection versus Signal to Noise Ratio 
 

I CASE 

In this case we consider a fixed Probability of False Alarm and a variable Number of 

Samples. In particular we consider 

 

 Fixed Probability of False Alarm: Pf=0.1 

 Variable Number of Samples: N=[5,15,50,100,500,1000]. 
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Figure 29: Probability of MisDetection versus SNR (fixed Pf = 0.1) 

 

II CASE 
 

In this second case we want analyse the probability of MisDetection as function of 

SNR for a variable Probability of False Alarm. Since we have seen that Probability 

of MisDetection depends by Number of Samples, we consider three different range 

an so three different values of samples. As in the “Number of Samples vs Probability 

of Detection” section, the three range are: 

 

4. Low Range ( 1020  SNR ): N=3000 (SensingTime = 1.1293 ms); 

5. Medium Range: ( 55  SNR ): N=24 (SensingTime = 0.0204 ms); 

6. High Range: ( 2010  SNR ): N=2 (SensingTime = 0.02 µs). 

 

All values are computed for an operation point (Pf=0.1, Pd=0.9) and the medium 

values of SNR of each range. 
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Figure 30: Probability of MisDetection versus SNR (Low SNR range, fixed N = 3000) 
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Figure 31: Probability of MisDetection versus SNR (Medium SNR range, fixed N = 24) 
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Figure 32: Probability of MisDetection versus SNR (High SNR range, fixed N = 2) 
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4.2 Cooperative Spectrum Sensing 

 

In order to improve the performance of the spectrum sensing, the Secondary Users 

can cooperate to detect the presence of the Primary User. The decision topology used 

for cooperative detection is a parallel network with a fusion center as shown in the 

next figure. 

 

 
Figure 33: Scheme of Cooperative Spectrum Sensing 

 

This topology consists of 2N  local detectors all observing the same phenomenon. 

The local detectors transmit their measurement statistics to a fusion center which 

makes a global decision. 

In this section we consider Hard Decision Fusion which means that each secondary 

user makes a local decision about the presence of primary user and then sends the 

binary decision to the fusion center for decision fusion. We consider performance’s 

analysis in the case of secondary users grouped in clusters, hence all with the same 

average Signal-to-Noise Ratio. 

Before to introduce the performance measurements of the Hard Decision Fusion, we 

start to analyse the collaborative spectrum sensing problem over a single narrow 

band. Consider a Cognitive Radio Network with M secondary users. Each user i, 

with i = 1,2,...,M, collects N measurements and formulates the binary hypothesis test 

problem: 
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where hi(n) is the channel gain between the primary user and the i th secondary user. 

Without loss of generality, it is assumed that hi is constant during the detection 

interval (N samples) and the value of N should be much less than the coherence time 

of the channel between the primary user and the secondary receivers. 

With energy detection, secondary user i uses the following decision rule: 
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   (10) 

 

where xi = [xi(1),xi(2),…,xi(N)]T, Ti(xi) measure the total energy and γi is the local 

threshold at the i th secondary user. 

To evaluate the sensing performance, we define the probability of correctly detecting 

spectral holes and the probability of interference as: 

 

fPHHP 1)|( 00      (11) 

 

dPHHP 1)|( 10      (12) 

 

where Pf and Pd denote the probability of false alarm and the probability of detection 

respectively. Specifically, )|( 00 HHP  is the probability that the secondary users 

successfully identify the unoccupied spectral segment, while )|( 10 HHP measures 

the probability that a secondary users cause harmful interference to the primary user 

(Probability of MisDetection). 
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4.2.1 Hard Decision Fusion 
 

Hard Decision Fusion means that each user observes, in the case of energy detection, 

the signal energy in a given spectrum band, compares it to a threshold and makes a 

decision on the presence of a primary user according to the observation. Each 

cooperative node then shares its decision with other radios using zero or one to 

inform whether they observe a free channel or an occupied channel, respectively. 

In the fusion center there is a fusion of decision according to a specific criterion. It is 

known that approaches based on likelihood-ratio test (LRT) provide the optimal 

performance according to the Neyman-Pearson criterion. Denote the decision from 

the individual nodes by a binary vector u = [u1,u2,…,uM]T, where 
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Let P(u|H0) and P(u|H1), respectively, represent the probability distribution functions 

of u under the hypothesis H0 and H1. Then the LRT detector is given by 
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where γ* is the optimal threshold determined by the target probability of detecting the 

spectral hole. Computing the optimal local decision thresholds  i  under the 

Neyman-Pearson criterion is mathematically untractable, and the problem becomes 

NP-complete if the measurements at the individual nodes are correlated. Hence, in 

this section we consider suboptimal solutions. 

The suboptimal decision from cooperating radios can be combined in several 

different ways. Let i, with i = 1,2,...,M, the number of cooperating users, we have: 
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OR – rule: the decision is made that a primary user is present if one of the 

cooperating radios detects a primary user. In case all secondary users have the same 

individual Pd and Pf, the joint probabilities of detection Qd,OR and false alarm Qf,OR 

can therefore be given as 

 

 MdORd PQ  11,      (15) 

 

 M
fORf PQ  11,      (16) 

 

If each secondary user has different individual Pd and Pf, the previous joint 

probabilities are given by 
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where Pf,i and Pd,i are the probabilities of false alarm and detection of i th user, 

respectively. 

 

AND – rule: the decision that a primary user is present is made only if all 

cooperating users detect the presence of primary user. In case all secondary users 

have the same individual Pd and Pf, joint probabilities of detection Qd,AND and false 

alarm Qf,AND for M cooperating users using AND-rule can be calculated as 

 

M
dANDd PQ ,      (19) 

 

M
fANDf PQ ,      (20) 

 



 61

If each secondary user has different individual Pd and Pf, the previous joint 

probabilities are given by 
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where Pf,i and Pd,i are the probabilities of false alarm and detection of i th user, 

respectively. 

 

MAJORITY – rule: the decision that a primary user is present is made if at least half 

of cooperating radios observe the presence of primary user. In case all secondary 

users have the same individual Pd and Pf, the joint probabilities of detection Qd,MAJ 

and false alarm Qf,MAJ for M cooperating users using MAJORITY-rule can be 

calculated as 
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Logically, this rule is a special case of a more generalised voting rule and it has a 

decision threshold equal to M/2, where M is the number of cooperating users. 

Different thresholds give rise to different rules, each having different performance.  
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4.2.2 Performance Analysis: Average SNR 
 

In this section we analyze the performance of distributed spectrum sensing in the 

simple case where secondary users are clustered. Under this hypothesis the Signal-to-

Noise ratio is the same for each cognitive radio. Hence, each SU i has the same Pf 

and Pd of the other SUs. 

As shown in the previous section, according to Hard decision fusion rules, the joint 

probability of detection, Qd,MAJ, and the joint probability false alarm, Qf,MAJ, depend 

on the probabilities Pd and Pf of single user. These individual probabilities can be 

calculated using the same approximation for number of samples shown in Step 1. 

Hence, if we denote with SNR  the average value of Signal-to-Noise Ratio we have 

 

     22
11 2122222

  SNRSNRPerfcPerfcN df   (25) 

 

where we use complementary error function avoid confusion between the Q-function 

and the joint probabilities Qf, Qd and Qm. The Q-function is given by 
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Using equation (25) the individual probabilities of detection and false alarm are 

given by 

 

 
 




























SNR

SNRN
Perfc

erfcP
f

d
212

2
22

2

1

2

1

   (28) 

 



 63


























2
2

21)2(2

2

1

2

1 SNRN
SNRPerfc

erfcP
d

f   (29) 

 

 

4.2.2.1 Receiver Operation Characteristic 
 

In this section we analyse the probability of Detection as function of Probability of 

False Alarm for different numbers of Cooperative Users. In other words, we describe 

how the use of Cooperation Strategies improves the performance of Spectrum 

Sensing. 

As shown in the previous section, the decision from cooperating radios can be 

combined in several ways. For this reason, initially we consider each rule separately 

and then a comparison between the three rules. 

 

 

OR - rule 

 

In the OR fusion rule, to achieve a target joint probability of false alarm Qf,OR for the 

network , from (16) the individual secondary users’ targeted probability of false 

alarm Pf is given by 

 

M
ORff QP ,11       (30) 

 

where M is the number of cooperating users. Using Pf of single user, the probability 

of detection Pd of the cooperating users is given by, substituting (30) into (28), 
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Substituting this equation into (15) we obtain the joint Probability of Detection. 

For fixed number of samples N=24 and an average Signal-to-Noise Ratio 

dBSNR 5  we obtain the following ROC curves. 

 

 

 

Figure 34: ROC– joint Probability of Detection versus joint Probability of False Alarm    

(OR fusion rule) 

 

In this figure we can see that it’s possible to improve the performance with an 

increased number of cooperating users. In this way, for a fixed probability of false 

alarm Qf,OR , it’s possible increase the probability of detection Qd,OR with an 

increased cooperating users’ number. For example, from 10 cooperating users we 

have almost 90% gain in accuracy over a single user, as shown in the next figure. 
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Figure 35: Gain in accuracy from 10 users over a single user (OR rule) 

 

Moreover, the following figure shows that for each value of joint probability of false 

alarm the joint probability of detection is higher if the number of cooperating users is 

increased. 
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Figure 36: Particular of ROC curves (OR fusion rule) 

 

In order to do a detailed analysis, the next figure shows the behaviour of the joint 

probability of detection and of the probability of detection for each user as functions 

of number of cooperating user. This curves depend on the average SNR and on the 
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individual probability of false alarm. In particular, we considered dBSNR 5  and 

Pf = 0.1. 
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Figure 37: Probabilities of Detection (Qd and Pd)  vs Number of Cooperating Users (OR rule) 

 

The previous figure shows that the benefits of cooperation can be achieved with a 

relative small number of cooperating users. In fact, with only 15 users we obtain a 

joint probability of detection equal to 0.9. Moreover, for M > 15 improving accuracy 

requires much more secondary users. Furthermore, another advantage from 

cooperation is that local demands imposed on individual secondary users can be 

relaxed for a fixed target joint Qd. Indeed, for a joint probability of detection equal to 

0.9, the individual probability of detection is lesser than 0.2. 

 

 

AND - rule 

 

In the AND fusion rule, as done in the case of OR fusion rule, to achieve a targeted 

joint probability of false alarm Qf,AND for the network , from (20) the individual 

secondary users’ targeted probability of false alarm Pf is given by 

 

M
ANDff QP ,       (32) 
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where M is the number of cooperating users. With the Pf, the probability of detection 

Pd of the cooperating users is given by, substituting (32) into (28), 
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Substituting this equation into (19) we obtain the joint Probability of Detection. 

For fixed number of samples N=24 and an average Signal-to-Noise Ratio 

dBSNR 5  we obtain the following ROC curves. 
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Figure 38: ROC– joint Probability of Detection versus joint Probability of False Alarm  

(AND fusion rule) 

 

In this figure we can see that the performance improvement of the AND rule is lesser 

than that of the OR fusion rule. Indeed, we can see that for small Qf, the increase of 

cooperative users’ number brings a small gain in terms of joint probability of 

detection. However, when the joint probability of false alarm increases, the 

performance of cooperative spectrum sensing, based on AND fusion rule, is worst 

than that of a single user, as shown in the next figure. 
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Figure 39: Particular of ROC curves (AND fusion rule) 

 

The next figure show the behaviour of Qd and Pd when the number of cooperating 

users in the network increases. 
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Figure 40: Probabilities of Detection (Qd and Pd)  vs Number of Cooperating Users (AND rule) 

 

The previous figure shows that the joint Probability of Detection increases initially 

and than decreases if the cooperating users’ number increases. Logically, this curves 

depend on the average SNR and on the individual probability of false alarm. In 

particular, we considered dBSNR 5  and Pf = 0.1. 

Furthermore, the local requirements increase with the number of cooperating users. 
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In fact, with 10 cooperating users we obtain a joint probability of detection equal to 

0.5, but the probability of detection imposed on individual secondary users is close to 

0.9. 

 

 

MAJORITY - rule 

 

In the MAJORITY fusion rule that we saw in equations (23) and (24), we compute 

the joint probabilities of detection and false alarm as functions of Pd and Pf of single 

user. As said in the previous section these probabilities are the same for all users 

because we use a fixed average SNR, SNR . 

Unlike the previous fusion rules, the complexity of the equation (24) does not allow 

an easy computation of Pf as function of joint probability of false alarm Qf. For this 

reason, to plot ROC curves we compute Pd using equation (28) and then we use 

directly the equations (23) and (24). 

For fixed number of samples N=24 and an average Signal-to-Noise Ratio, 

dBSNR 5 , we obtain the following ROC curves. 

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Qf,MAJ

Q
d,

M
A

J

 

 
1 user

2 users

3 users
5 users

10 users

 
Figure 41: ROC – joint Probability of Detection versus joint Probability of False Alarm 

(MAJORITY fusion rule) 
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In this figure we can see that, as in the OR fusion rule, the performance’s 

improvement is high if the number of cooperating users is increased. In this way, for 

a fixed joint probability of false alarm Qf, it’s possible to increase the probability of 

detection Qd with a increase of the cooperating users’ number. For example, if we for 

an operation point (Qf,OR =0.1, Qd,OR = 0.9) we have 100% gain in accuracy from 10 

users over a single user, as shown in the next figure. 
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Figure 42: Gain in accuracy from 10 users over a single user (MAJ rule) 

 

Moreover, the following figure shows that for each value of joint probability of false 

alarm the joint probability of detection is higher if the number of cooperating users is 

increased, as seen in the case of OR fusion rule. 
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Figure 43: Particular of ROC curves (MAJORITY fusion rule) 

 

 

4.2.2.2 ROC: Comparison between Fusion Rules 
 

As shown in the previous section, the effect of Cooperative Spectrum Sensing is a 

performance improvement of the network in terms of Qf  and Qd. This benefits can be 

viewed in a three manner: 

 

1. Accuracy Gain: increased Qd for fixed Qf; 

2. Less Sophisticated Sensors: local Pd can be decreased and the system still can 

achieve the target Qd; 

3. Less Number of Samples: smaller Pd implies a decrease of the number of 

sample, as shown by equation (23). Moreover, Sensing time decreases as the 

number of sample decreases (T=N/2B, where B is the bandwidth). 

 

Logically, this depend on the fusion rule. For this reason, in this section we do a 

comparison between the three fusion rules. Next figure shows ROCs for different 

fusion rules and 10 collaborating users. As before we use dBSNR 5  and N = 24 

samples. Moreover, to do a detailed analysis we plot also the ROC curve without 

cooperation, i.e., the case of a single user. 
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Figure 44: ROC curves – Comparison between Fusion Rules 

 

As we can see, there is higher accuracy gain with MAJORITY and OR fusion rules. 

 

 

4.2.2.3 Complementary Receiver Operation Characteristic 
 

In this section we analyse the joint Probability of MisDetection Qm as function of 

joint Probability of False Alarm Qf, hence the Complementary Receiver Operation 

Characteristic. As done for ROC curves we consider a fixed average Signal-to-Noise 

Ratio of dBSNR 5  and a number of samples N=24. Initially, we consider each 

rule separately and then a comparison between the three rules. 

 

 

OR - rule 

 

In case all secondary users have the same individual Pd, the joint probability of 

detection Qd,OR is given by equation (15). Hence, the joint Probability of 

MisDetection, defined as (1-Qd), is given by 
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 MdORdORm PQQ  11 ,,     (34) 

 

where M is the number of cooperating users. 

As done for ROC curves, to achieve a target joint probability of false alarm Qf,OR for 

the network , from (16) the individual secondary users’ targeted probability of false 

alarm Pf is expressed by equation (30). Using Pf of single user, the probability of 

detection Pd of the cooperating users is given by equation (31). Substituting (31) into 

(15) we obtain the joint Probability of Detection, and then we can compute the joint 

probability of misdetection in the case of OR fusion rule using equation (34). Using 

equation (34) we can plot the Complementary ROC. Result is shown in the next 

figure. 
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Figure 45:CompROC: joint Probability of MisDetection versus joint Probability of False Alarm 

(OR rule) 

 

As expected, the joint probability of misdetection assumes very small values when 

the joint Probability of False Alarm is near to 1. Moreover, Qm,OR decrease when 

number of cooperating users increase. Hence, the use of collaborative spectrum 

sensing improve performance in terms of a decreased joint probability of 

misdetection. 
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AND - rule 

 

In case all secondary users have the same individual Pd, the joint probability of 

detection Qd,AND is given by equation (19. Hence, the Probability of MisDetection, 

defined as (1-Qd) is given by 

 

M
dANDdANDm PQQ  11 ,,     (35) 

 

where M is the number of cooperating users. As done for ROC curves, to achieve a 

target joint probability of false alarm Qf,AND for the network , from (20) the individual 

secondary users’ targeted probability of false alarm Pf is expressed by equation (32). 

Using Pf of single user, the probability of detection Pd of the cooperating users is 

given by equation (33). Substituting (33) into (19) we obtain the joint Probability of 

Detection, and then we can compute the joint probability of misdetection in the case 

of AND rule using equation (35) and plot the Complementary ROC. Result is shown 

in the next figure. 
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Figure 46:CompROC: joint Probability of MisDetection versus joint Probability of False Alarm 

(AND rule) 
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As expected from the ROC, the Probability of MisDetection also assumes the same 

behaviour of the Probability of Detection. Indeed, we can see that for small Qf, the 

increase of cooperative users’ number brings a small gain in terms of joint 

probability of misdetection, but when the joint probability of false alarm increases, 

the performance of cooperative spectrum sensing, based on AND fusion rule, is 

worst than Local Spectrum Sensing, as shown in the next figure. 
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Figure 47: Particular of Comp. ROC (AND rule) 

 

 

MAJORITY - rule 

 

In case all secondary users have the same Pd, the joint probability or detection Qd,MAJ 

is given by equation (23). Hence, the Probability of MisDetection, defined as 

)Q-(1 d  is given by 
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where M is the number of cooperating users. Unlike the previous fusion rules, the 

complexity of the equation (24) does not allow an easy computation of Pf as function 

of joint probability of false alarm Qf. For this reason, to plot Complementary ROC 
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curves we compute Pd using equation (28) and then we use directly the equations 

(36) to compute the probability of misdetection for MAJORITY fusion rule. Using 

equation (36) we can plot the Complementary ROC in the case of MAJORITY 

Fusion rule. Result is shown in the following figure. 
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Figure 48:CompROC: joint Probability of MisDetection versus joint Probability of False Alarm 

(MAJORITY rule) 
 

As expected, the joint probability of misdetection Qm decreases when number of 

cooperating users increases. Hence, the use of collaborative spectrum sensing 

improve performance in terms of a decreased joint probability of misdetection. 

 

 

4.2.2.4 CROC: Comparison between Fusion Rules 
 

As done for the ROC, in this section we do a comparison for Complementary ROC 

between the three fusion rules. Next figure shows Complementary ROC for different 

fusion rules and for 10 collaborating users. As before we use dBSNR 5  and N = 

24 samples. Moreover, to do a detailed analysis we plot also the ROC curve without 

cooperation, i.e., the case of a single user. 
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Figure 49: Comp. ROC curves – Comparison between Fusion Rules 

 

As expected from Complementary ROCs, there is higher performance’s 

improvement with OR and MAJORITY fusion rules. 

 

 

4.2.3 Behaviour in Average SNR 
 

The goal of this subsection is to analyze the performances of Cooperative Spectrum 

Sensing as function of Signal-to-Noise Ratio. The analysis is divided in two parts. 

The first involves the Probability of Detection while the second involves the 

Probability of MisDetection. For each part we consider the OR fusion rule. We 

consider the following range of average SNR: 

 

 Medium Range: 55  SNR  

 

Moreover, we fixed the number of samples at the same value of the previous section 

(N = 24) and the joint probability of false alarm to Qf = 0.1. 
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4.2.3.1 Probability of Detection versus Signal to Noise Ratio 
 

We want analyse the Probability of Detection for the network (Qd) as function of 

average SNR for a variable number of cooperating users. 

For a number of users n = [1,2,3,4,5,10] we obtain the following curves. 
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Figure 50: joint Probability of Detection (Qd) versus SNR (OR fusion rule) 

 

As expected, the plot shows that the joint probability of detection increases with the 

number of cooperating users. Results indicate a significant improvement in term of 

required average SNR for detection. In particular, to achieve a probability of 

detection equal to 0.9, local spectrum sensing requires SNR=0 dB while 

collaborative sensing with n = 10 only needs a average SNR of -3.68 dB for 

individual users, as shown in the following figure. 
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Figure 51: performance gain in SNR (DSS – Qd - OR rule) 

 

Hence, distributed spectrum sensing yields a 3.68 dB performance gain over local 

spectrum sensing for the operation point (Qf, Qd)=(0.1, 0.9) with only 10 users. 

 

 

4.2.3.2 Probability of MisDetection versus Signal to Noise Ratio 
 

In this section we analyse the joint probability of misdetection Qm as function of 

average SNR for a variable number of cooperating users. 

For a number of users n = [1,2,3,4,5,10] we obtain the following curves. 
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Figure 52: joint Probability of MisDetection (Qm) versus SNR (OR fusion rule) 

 

The plot shows that the Probability of MisDetection decreases as the number of 

cooperating users increases. Results indicate a significant reduction in term of 

required average SNR for misdetection. In particular, for a probability of 

misdetection equal to 0.1, local spectrum sensing requires SNR=0 dB while 

collaborative sensing with n = 10 only needs an average SNR of -3.68 dB for 

individual users, as shown in the following figure. 
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Figure 53: performance gain in SNR (DSS – Qm - OR rule) 

 



 81

4.3 Conclusions 

 

This sections explored the improvements in spectrum sensing performance 

achievable through network cooperation and showed that sensing reliability improves 

monotonically with the number of cooperative radios in the case of OR and 

MAJORITY fusion rules. However, in practical network scenarios cooperation 

requires sharing information among cognitive radios. In particular, secondary users’ 

cooperation requires to share and coordinate individual sensing decision. Hence, 

cooperation requires a common control channel with minimized load, and low 

latency which increases if the number of cooperative users is increased. Moreover, 

control channel requires a physical communication channel which occupies spectrum 

resources, thus its load should be minimized. 
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Chapter 5 

LOCAL SPECTRUM SENSING USING 
SINGLE-STAGE SENSING 

 

In Cognitive Radio systems that use Dynamic Frequency Selection (DFS), spectrum 

sensing is essential for the protection of legacy spectrum users. In particular, in the 

absence of cooperation or signalling between the primary licensee and the secondary 

user, spectrum availability for the opportunistic spectrum access may be determined 

by direct spectrum sensing. Moreover, in the normal operation mode, the secondary 

user has to detect the channel periodically during its data transmission to decide 

whether the channel is idle. Hence, in order to avoid unacceptable interferences to 

primary user, the secondary user must follow the next two principles: 

 

 Detect the channel before starting data transmission to decide whether it is 

idle. A high probability of detection has to be achieved; 

 Detect the channel periodically during data transmission. 

 

Assuming that the secondary user has detected an idle channel before data 

transmission, we consider only the second principle that it is known as In Band 

Spectrum Sensing. After detecting a white space, the secondary user starts utilizing it 

by properly tuning its transmission parameters. However, secondary user should 

periodically sense the licensed spectrum in case a primary user starts to transmit. 

In this section we investigate the optimum allocation of the sensing time according 

with the requirements about the sensing accuracy defined in the IEEE 802.22 

standard. 
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5.1 Overview on Spectrum Sensing using Single-
Stage Sensing 

 

In this section, we describe the basic definitions of the Local Spectrum Sensing 

(LSS) using Single Stage Sensing (SSS). To do this, we consider the simplest 

cognitive radio system model which has only one available channel and a pair of 

licensed user and secondary user. As usual, the primary user does not always occupy 

the channel, which leads the channel being underutilized in the time domain. The 

secondary user is the cognitive radio user which is permitted to use the channel only 

when the licensed user is absent (Opportunistic Spectrum Access or Spectrum 

Overlay). To introduce LSS–SSS consider the following figure in which Intra-frame 

Sensing is shown. 

 

 
Figure 54: Frame structure for Cognitive Radio Networks with periodic spectrum Sensing 

 

As specified in the IEEE 802.22 WRANs standard draft, the final decision must be 

made before the Channel Detection Time (CDT) that is defined as the maximum time 

for the sensing device to decide on the channel status. This means that sensing device 

must ensure at least one chance to sense the channels in a CDT interval. 

Let FS and L represent the size of an IEEE 802.22 frame (10 msec) and the duration 

of a quiet period, respectively. The parameter L depends on the number of samples 

collected and it’s the time needed by the detection technique to sample the channel. 

The 802.22 MAC allows only one intra-frame quiet period per frame and it must be 

scheduled always at the end of the frame. Moreover, the sensing device decides 

whether to schedule an intra-frame quiet period over multiple frames in order to 
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perform more detailed sensing. Hence, the most important settings concern the 

allocation of quiet periods and its duration. Since consecutive quiet periods are 

carried out, we assume that they are allocated in a periodic manner. We represent the 

periodic allocation of SSS using a Sensing Period (T) 

 

FST   ,     (1) 

 

where   FSCDT,1  is the allocation coefficient. The duration of a quiet period 

must be shorter than the sensing period 

 

FSTL   .     (2) 

 

The Single Stage Sensing’s structure is show in the next figure 

 

 
Figure 55: Single Stage Sensing based on DFS time requirements for IEEE 802.22 WRANs 

 

Moreover, the number of quiet periods of SSS is given by 

 







T

CDT
M .     (3) 

 

Both allocation coefficient and quiet period’s duration must be set in a combined 

manner in order to obtain a good sensing accuracy and a high throughput. 
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5.2 Single Slot Spectrum Sensing 

 

In this subsection we analyse the Local Spectrum Sensing using Single Stage 

Sensing (LSS-SSS). In this case there is not cooperation between sensing devices and 

each secondary user uses an allocation coefficient equal to 200. Hence, the sensing 

period is equal to 2 seconds. In other words, we consider the simple case of a Single 

Slot in a CDT interval, as shown in the next figure. 

 

 
Figure 56: Single Slot Spectrum Sensing using Single Stage Sensing 

 

 

5.2.1 Sensing Accuracy 
 

As seen in the Chapter 4, the performance analysis of the spectrum sensing can be 

done using the probabilities of false alarm and detection 
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respectively. As done in the Chapter 4, it’s easy to see that the two previous 

probabilities are given by 
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where B is the channel bandwidth and L is the duration of the quiet period. Moreover, 

in order to obtain a high sensing accuracy in SSS, we must minimize the probability 

that the sensing device declares the channel as idle when it is actually busy, 

)|( 10 HHP , which measures the probability that a secondary users cause harmful 

interference to the primary user (Probability of MisDetection) 
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As we can see from equation (6), (7) and (8), the sensing accuracy depend on the 

number of samples collected. Using these equations, we can analyse the behaviour of 

the sensing accuracy as function of the quiet period’s duration. 

From equation (2), we can see that from the regulator’s viewpoint it suffices for the 

secondary system to be able to monitor the band and make a decision about the 

presence of the licensee once in every T seconds. However, from the secondary 
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user’s point of view, it is desired to maintain the time L required for sensing well 

below T in order to maximize the time available for data transmission. In other hands, 

while choosing a smaller L allows to obtained a higher channel utilization, it results 

in a higher probability of false alarm. This is an important aspect because the 

increased false alarm result in a higher number of unnecessary channel evacuations 

and channel-search periods (the time used to search a new idle channel), thereby 

reducing the average channel utilization. 

 

 

5.2.2 Channel Utilization 
 

In the previous section we have seen that the sensing accuracy of LSS-SSS can be 

characterized using equations (6) and (7). Logically, we obtain a higher sensing 

accuracy if the duration L of quiet period is increased. This yields however the data 

throughput achievable in to decrease. For this reason, we must find a measure for 

data throughput (a suitable duration of quiet periods) in order to balance these two 

contrasting quantities. In this analysis we use the Channel Utilization ρ to 

characterize the system. 

Before to start our analysis, the following considerations are necessary. In the normal 

operation mode, the secondary user transmits its information, senses the 

environments periodically and makes a final decision about the state of the channel. 

When the secondary user declares the channel as busy, it must search another 

channel where continue its transmission. 

To analyse the channel utilization, we divide our work in two part: 

 

1. In-Band Channel Utilization: the channel is declared idle and sensing device 

is in Normal Operation Mode; 

2. Average Channel Utilization: this is the general scenario in which the channel 

can be declared idle or busy. 

 

Moreover, as done for the sensing accuracy we consider the point of view of the 

secondary user in which we analyse the behaviour of the channel utilization as 
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function of the sensing time in order to find the optimum sensing time that maximize 

it. Hence, the goal of this subsection is to investigate the trade off between the 

channel utilization and sensing time. 

 

 

5.2.2.1 In-Band Channel Utilization 
 

Let the hypotheses H0 and H1 occur with probabilities idlePHP )( 0  and 

idlebusy PPHP  1)( 1 , respectively. Then, during normal operation mode, 

sensing device decide for an idle channel in the two following cases: 

 

1. Channel idle and declared idle: this is a correct decision about the idle state of 

the channel. Its probability is equal to )1()|( 00 fidle PPHHP  ; 

2. Channel busy and declared idle: this is the case of misdetection of the 

primary user. Its probability is equal to )1()|( 10 dbusy PPHHP  . 

 

Hence, the probability that the channel is declared idle is given by 

 

busydidlefs PPPPP  )1()1( .   (9) 

 

Let TLT )(   the percentage of time used for data transmission, the channel 

utilizations of the two previous cases can be defined as follow 
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respectively. Hence, the In-Band Channel Utilization can be defined as follow 
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which is the ratio of the amount of time available for data transmission to the total 

amount of time the channel remains perceived idle. Using equation (9), the In-Band 

Channel Utilization can be express as follow 
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5.2.2.2 Average Channel-Search Time 
 

In this subsection we analyse the impact of the Average Channel-Search Time Tsearch. 

Let Ts denote the time spent for sensing each channel using energy detection, 

according with the performance requirements about the probabilities of false alarm 

and detection, during the channel-search period. For a given probability of false 

alarm fP  and probability of detection dP during the search period, the probability 

that a channel is declared idle and is acquired for the secondary transmission, is 

given by 

 

busydidlefs PPPPP )1()1(  ,   (14) 

 

where Pidle and Pbusy be the probabilities of the hypotheses H0 and H1, respectively. 

The first term in (14) corresponds to the successful identification of a white space, 

while the second term represents the case where the channel is falsely deemed idle 

due to the non-detection of the primary signal. Since we suppose to have an high 

probability of detection during the channel-search, the second term is negligible and 

we may approximate sP  in the following manner. 
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idlefs PPP )1(  .    (15) 

 

Assuming that the number of primary channel, C, is to be sufficiently large such that 

during the channel-search, with high probability, at least one of the primary channels 

is idle, that is 

 

1)1( 11   C
s

C
busy PP ,    (16) 

 

as demonstrated in [1], the average time to find an idle channel is given by 
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where the last approximation in (17) follows from the high probability that at least 

one channel is declared idle ( 1)1( 1  C
sP ). Substituting (15) into (17), we obtain 
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 .    (18) 

 

Hence, the optimum Sensing Time for each channel can be formulate as follow: 
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where sTmin  is the minimum sensing time to obtain the maximum value of the 

probability of false alarm. It can be compute using equation (6) as follow 
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where L was replaced with the minimum sensing time sTmin . 

The trade off between the channel-search time and the quality of sensing can be 

observed plotting the average channel-search time as function of the sensing, as 

shown in the next figure, in which we consider a probability of detection equal to 

0.99, a SNR equal to -20.8 dB and a bandwidth equal to 6 MHz. In particular, when 

the sensing time for each channel increases, the searchT  is decreased. However, 

beyond a certain point, this gain is outweighed by the long sensing times 
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Figure 57: Single Slot LSS - Average Channel-Search Time VS Sensing Time (Pd=0.99) 
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Figure 58: Single Slot LSS - Average Channel-Search Time VS Probability of False Alarm 

(Pd=0.99 and Pidle=0.15) 

 

In the previous figure we can see the same behaviour of the average channel search 

when it is function of the probability of false alarm and for an underutilization of the 

channel equal to 0.15. In particular, in this case we obtain a sensing time for each 

channel equal to 21.94 ms, a probability of false alarm equal to 0.58 and a average 

channel-search time equal to 105.43 ms. Logically, this values depend on the 

underutilization of the channel, hence, on the probability of the hypothesis H0. In the 

next table are shown the optimum values searchT  for three different underutilization 

of the channel. 

 

 P(H0)=0.15 P(H0)=0.50 P(H0)=0.85 

searchT  351.45 ms 105.43 ms 62.02 ms 
 

Table 2: Single Slot LSS - Optimum values of the Average channel-Search Time 

 

To conclude this subsection, in the next figures we plot again the average search-

time as function of sensing time and of the probability of false alarm for a different 

value of the target probability of detection ( 999.0dP ). 
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Figure 59:Single Slot LSS - Average Channel-Search Time VS Sensing Time (Pd =0.999) 
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Figure 60: Single Slot LSS - Average Channel-Search Time VS Probability of False Alarm 

(Pd=0.999 and Pidle=0.15) 
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5.2.2.3 Average Channel Utilization 
 

As seen in the previous section, the secondary user must search a new idle channel 

only when it decides for the hypothesis H1. In this subsection, we analyse the channel 

utilization when the sensing device declares the channel. A channel is declared busy 

in the two follows cases: 

 

1. Channel busy and declared busy: this is a correct detection of the primary 

user’s transmission. Its probability is equal to 

dbusyd PPPHPHHP  )()|( 111 ; 

2. Channel idle and declared busy: this is the case of false alarm decision about 

the state of the channel. Its probability is equal to 

fidlef PPPHPHHP  )()|( 001 . 

 

The probability that a channel is declared busy is given by 

 

dbusyfidlee PPPPP  ,    (21) 

 

In this case, the sensing device must cease all interfering transmission on the current 

channel, search a new idle channel and start again the transmission. Moreover, if 

hypothesis H1 is occurred the sensing device, or the Base Station , shall modify the 

system operating parameters for the new transmission. Hence, the total time from the 

detect of the primary user and the new transmission are the following: 

 

1. Channel Move Time (  sec2  TMove  ): the time taken by a WRAN system to 

cease all interfering transmissions on the current TV channel upon detection 

of a licensed incumbent signal above the relevant Incumbent Detection 

Threshold; 
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2. Channel Setup Time (  sec2  TSetup  ): the window of time that may be taken 

by a WRAN CPE to transmit control information to a WRAN base station in 

order to establish operation with that base station at the prescribed power. 

 

The total time used by the sensing device to transmit, sense the channel, search a new 

channel and start new transmission is equal to SetupMovesearchtot TTTTT  . 

Hence, using equations (13) and (21), the Average Channel Utilization can be 

defined as follow 
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Substituting sP  and eP  using equations (9) and (21), we obtain 
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5.2.3 Cognitive Radio Transmission Scenarios 
 

As we seen in the previous subsections, from the regulator’s viewpoint it suffices for 

the secondary system to be able to monitor the band and make a decision about the 

presence of the licensee once in every T seconds. Based on this consideration, we can 

define two different scenarios: 

 

1. Constant Primary User Protection (CPUP); 

2. Constant Secondary User Spectrum Utilization (CSUSU). 

 

In the following subsection, we analyse the behaviour of sensing accuracy, the In-

Band Channel Utilization and the Average Channel Utilization as function of the 
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sensing time. The goal of this section is to see if the radio transmission scenarios 

defined above it’s possible to set an optimum sensing time in order to guaranteed the 

sensing accuracy defined in the DFS timing requirements that maximizes the channel 

utilization. 

 

 

5.2.3.1 Constant Primary User Protection 
 

The first transmission mode is viewed from the primary user’s point of view and it 

guarantees a minimum level of interference. This scenario can be realized by fixing 

the probability of detection at the required level dP  and minimizing the probability 

of false alarm in (6) as much as possible 
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In other words, the probability of false alarm can be minimized by increasing the 

quiet period’s duration. 

According with the DFS requirements, we consider the incumbent detection 

threshold of the DTV signal ( dBm -116Ps  ) and a noise level equal to 

dBm -95.2Pn   (bandwidth equal to 6 MHz and dBNF 11 ). 

In the following subsection, we analyse the behaviour of the probability of false 

alarm, the In-Band Channel Utilization and the Average Channel Utilization as 

function of the sensing time. 

 



 97

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L (ms)

P
ro

ba
bi

lit
y 

of
 F

al
se

 A
la

rm

 

 

Pd=0.80

Pd=0.85
Pd=0.90

Pd=0.95

 
Figure 61: LSS-SSS - Single Slot Sensing - Probability of False Alarm versus Sensing Time 

(CPUP) 

 

As we can see, at the same sensing time, increasing the primary user’s protection 

level by stating higher probability of detection values leads to increase the 

probability of false alarm and consequently, fewer chances for the secondary user to 

utilize the channel. Therefore, there will be a trade of between these two conflicting 

objectives. This trade off can be analyzed plotting the channel utilization as function 

of the sensing time. 

In the CPUP scenario we consider a target probability of detection dP  in order to 

guarantee a fixed protection of the primary user. In this case, using equation (12) the 

In-Band Channel Utilization can be express as follow 
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In practice, the target probability of detection is chosen to be close to but less than 1. 

In particular, in IEEE 802.22 WRAN the requirements establish the minimum value 

equal to 0.9. Since we suppose that the activity probability of the primary user is 

small, say less than 0.5, we can neglect ρ2. In fact, studies have shown that the 
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utilization of the channels ranging from 0.15 to 0.85, depending on the location and 

time of the day. In the worst case in which 85.0busyP , the probability that a busy 

channel is declared idle by the secondary user is equal to 0.085. Hence, the In-Band 

Channel Utilization can be approximate as follow 
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To justify our approximation in (26), in the next figure we do a comparison between 

the effective In-Band Channel Utilizations and its approximation. 
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Figure 62: LSS-SSS - Single Slot Sensing – Comparison between Approximate and Effective In-

Band Channel Utilization (Pidle=0.85 - CPUP) 

 

The behaviour of the In-Band Channel Utilization as function of the sensing time is 

shown in the following figures. 
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Figure 63: LSS-SSS - Single Slot Sensing – Effective Channel utilization versus Sensing Time 

(CPUP) 
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Figure 64: LSS-SSS - Single Slot Sensing – Approximate Channel utilization versus Sensing 

Time (CPUP) 

 

As we can see from the previous figures, increasing the sensing accuracy by sensing 

each channel for a longer time, reduces the probability to detect the a busy channel 

thanks to the decreased false alarm. Beyond a certain point, however, this gain is 
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outweighed by the longer sensing time. This means that the parameter L must be 

chosen in order to maximize equation (25). Hence, in a CPUP scenario, the optimum 

sensing time optL  for channel utilization in normal operation mode must be 

formulate as follow 
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Figure 65: Single Slot Sensing –Optimum Sensing Time (In-Band Channel Utilization - CPUP) 

 

In particular, for the system value defined above, the Optimum Sensing Time is 

equal to 68.13 ms. Using this value we obtain an In-Band Channel Utilization equal 

to 0.83 and a 0068.0fP . 

Now, we consider the behaviour of the Average Channel Utilization using equation 

(23), that in CPUP scenario can be express as follow: 
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Considering the comments about the probability of detection and its influence to the 

two channel utilization above, we can approximate the effective Average Channel 

Utilization as follow 
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To justify our approximation in (29), in the next figure we do a comparison between 

the effective Average Channel Utilizations and its approximation. In the following 

plot we consider a 85.0idleP , that represents practice value. 
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Figure 66: Single Slot Sensing – Comparison between Approximate and Effective Channel 

Utilization (Pidle=0.85 - CPUP) 

 

As we can see, the approximate average channel utilization in (29) is close to the 

effective average channel utilization in (28). Plots of the Average Channel 

Utilization as function of the sensing time are shown in the next figures. 
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Figure 67: Single Slot LSS – Effective Average Channel Utilization VS Sensing Time (CPUP) 
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Figure 68: Single Slot LSS – Approximate Average Channel Utilization VS Sensing Time 

(CPUP) 

 

The previous figures show that decreasing the probability of false alarm does not 

lead to an absolute increase of the secondary user throughput as thought but instead, 
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there is an optimal sensing time at which the channel utilization is maximize. 

Moreover, the figure also reveals that the channel utilization increases if the 

underutilization of the channel idleP  is increased. Hence, we conclude that the 

parameter L must be chosen in order to maximize the equation (28). Hence, in a 

CPUP scenario, the optimum sensing time optL  for channel utilization must be 

formulate as follow 
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Figure 69: Single Slot Sensing –Optimum Sensing Time (Average Channel Utilization - CPUP) 

 

In particular, for the system value defined above, the Optimum Sensing Time is 

equal to 60.1 ms. Using this value we obtain an Average Channel Utilization equal to 

0.875 and a 012.0fP . This value of fP  is lesser than the maximum value defined 

by the Functional Requirements for the 802.22 WRAN Standard ( 1.0max, fP ). 
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The simulation results shown that, in local single slot spectrum sensing under CPUP 

transmission mode, the maximum secondary user’s capacity is achieved at a unique 

optimum sensing time, which can be found maximizing equation (30). 

 

 

5.2.3.2 Constant Secondary User Spectrum Utilization 
 

The second scenario is taken from the secondary user’s perspective; it aims to 

standardize the spectrum utilization by secondary user. As such, the fP  values 

should be fixed at lower values, according to the standard’s requirements, while keep 

maximizing dP  which can be written using (7) as follows 
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Increasing the sensing time leads to an improvement on the primary user’s protection 

represented by increasing the probability of detection. In the following figure, we 

plot the behaviour of the probability of detection as function of the sensing time. As 

done in the CPUP scenario, according with the DFS requirements, we consider the 

incumbent detection threshold of the DTV signal ( dBm -116Ps  ) and a noise level 

equal to dBm -95.2Pn   (bandwidth equal to 6 MHz and dBNF 11 ). 
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Figure 70: LSS-SSS - Single Slot Sensing - Probability of Detection versus Sensing Time 

(CSUSU) 

 

As we can see, at the same sensing time, increasing the spectrum usability by 

decreasing the probability of false alarm leads to decrease dP  that is the protection 

of primary user. Again, there will be a trade of between these two conflicting 

objectives. In the CSUSU scenario, we consider a target probability of detection fP  

in order to guarantee a fixed spectrum utilization of the secondary user. In this case, 

using equation (12) the In-Band Channel Utilization can be express as follow 

 

  





 


T
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PPPP busydidlefIB )1()1( .  (32) 

 

Since in this scenario the probability of detection depend on the time used to sense 

the environment, the probability that sensing device declare the channel idle when it 

is busy is not negligible. Moreover, according with the requirements about the 

sensing accuracy, for this scenario we consider the maximum value allowed for the 

probability of false alarm, 1.0fP . 
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Figure 71: Single Slot LSS – In-Band Channel Utilization VS Sensing Time (CSUSU) 

 

As we can see in the previous figure, the In-Band Channel Utilization decreases with 

increasing the sensing time as well as increasing the protection level of the primary 

user. Now, from equation (23) the Average Channel Utilization for CSUSU scenario 

can be express as follow 
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Again, since in this scenario the probability of detection depend on the time used to 

sense the environment, the probability of detection not negligible and, according with 

the requirements about the sensing accuracy, for this scenario we consider the 

maximum value allowed for the probability of false alarm, 1.0fP . 

The result is shown in the next figure. 
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Figure 72: Single Slot LSS – Average Channel Utilization VS Sensing Time (CSUSU) 

 

Again, the average channel utilization decreases if the sensing time is increased. 

To conclude this subsection, we can say that, in local single slot spectrum sensing 

under CSUSU mode, there is no optimal sensing time at which the secondary user 

capacity can be maximized. The secondary user capacity continuously to decrease 

with increasing the sensing time as well as increasing the protection level of the 

primary user. Hence, the “Optimum Sensing Time” must be chosen in order to 

guaranteed the minimum value of primary user’s protection. In particular, according 

with the requirements about sensing accuracy, sensing time must be chosen in order 

to guarantee a probability of detection equal to 0.9, as shown in the next figure 
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Figure 73: Single Slot Sensing –Optimum Sensing Time (Sensing Time - CSUSU) 

 

Using this Sensing time, that is equal to 32 ms, we can compute the maximum 

Average Channel Utilization of the secondary user. In particular, in the following 

plot we can see that in the case of CSUSU scenario it is equal to 0.839. 
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Figure 74: Single Slot Sensing – Maximum Average Channel Utilization (Sensing Time - 

CSUSU) 



 109

5.2.4 Comparison between CPUP and CSUSU Scenarios 
 

As we have see in the previous subsection, the selection of the optimum sensing time 

is made based on the scenario. In particular, in the CPUP scenario the optimum 

sensing time is select according with the maximization problem in (30), while in the 

CSUSU scenario it is the value that allowed to obtain the minimum value for the 

probability of detection equal to 0.9. 

The goal of this section is to understand in which scenario we obtain the higher 

Average Channel Utilization. To do this, we consider the following figure in which 

the Average Channel Utilization as function of the sensing time is shown. 
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Figure 75: Comparison between CPUP and CSUSU Scenarios (Channel Utilization) 

 

As we can see, the values of the Average Channel Utilization are equal to 0.875 in 

the CPUP Scenario and 0.839 in the CSUSU Scenario. Hence, if we must chose 

between the two transmission mode, the CPUP is better than CSUSU, but this 

difference is very small. 
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5.3 Multi Slot Spectrum Sensing 

 

In this section, we analyze the case in which the number of the quite period is largest 

than one. Hence, the goal of this section is to analyse if using the multi slot spectrum 

sensing we obtain an increase of the channel utilization, and so a decrease of the 

sensing time. To do this, we introduce a new variable in our analysis: the allocation 

coefficient α. As seen in equations (1) and (3), both the sensing period and the 

number of quiet periods depend on the value of α, respectively. Hence, the single slot 

in the previous section is split into multiple discontinuous mini-slot. Let Li be the 

duration of a quiet period for each slot, and again M and T the number of quiet period 

(number of mini-slot) and the sensing period, respectively. Without loss of generality, 

we fix the total sensing time to MLL i , and the number of samples equal to 

MLBMNNi / . This means that the quiet periods’ duration is the same for 

each mini-slot. At the end of the CDT interval, the final decision is based on the 

fusion of the samples collected during the M quiet periods. The Multi Slot Single 

Stage Sensing’s structure is shown in the next figure. 

 

 

Figure 76:LSS - Multi Slot Single Stage Sensing’s structure 
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As demonstrated in [2], according with the our hypothesis of energy detection 
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in which we consider the case of static channel ( 1ih ), the use of M mini-slot does 

not provide any performance gain when data fusing is applied. For this reason, in our 

work we consider only the case of Decision Fusion, in which the final decision at the 

end of the CDT interval is based on the M decision made during the M quiet periods, 

as shown in the next figure. 
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Figure 77: LSS - Multi Slot Decision Fusion 

 

Assuming that all decision are independent, and supposing that 

   
0,... d

M
d

1
d PPP   and    

0,... f
M

f
1

f PPP  , where the probabilities of false 

alarm and detection for each quiet periods is given by equations (6) and (7), in this 
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subsection we analyse the impact of this model on the performance of spectrum 

sensing using different fusion rules. In particular, under the hypothesis that the 

primary user either active or inactive for all the M mini-slots, the probabilities of 

detection Pd and false alarm Pf in multi slot spectrum sensing can are given by 

 

 “LOGIC OR” fusion rule: in the final decision sensing device decides that the 

primary user is present if at least in one mini slot the decision H1 is made. 

The probabilities of detection Pd,OR and false alarm Pf,OR can therefore be 

given as 

 

 MdORd PP 0,, 11      (35) 

 

 MfORf PP 0,, 11      (36) 

 

The average channel utilization can be express using equation (22), where the two 

probabilities, sP  and eP , are given by 

 

    busyORdidleORfs PPPPP ,, 11     (37) 

 

busyORdidleORfe PPPPP ,,     (38) 

 

 “LOGIC AND” fusion rule: in the final decision sensing device decides that 

the primary user is present only if in all mini the decision H1 is made. The 

probabilities of detection Pd,AND and false alarm Pf,AND are given by 

 

M
dANDd PP 0,,      (39) 

 

M
fANDf PP 0,,      (40) 
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The average channel utilization can be express using equation (22), where the two 

probabilities, sP  and eP , are given by 

 

    busyANDdidleANDfs PPPPP ,, 11     (41) 

 

busyANDdidleANDfe PPPPP ,,     (42) 

 

 

5.3.1 Decision Fusion under CPUP Scenario 
 

In this subsection, considering both the Logic OR and Logic AND fusion rules, we 

analyse the performance of Decision Fusion in multi slot spectrum sensing under the 

Constant Primary User Protection Scenario. 

As done in the case of single slot, we use a target Probability of Detection of the final 

decision equal to 0.9, and, according with the DFS requirements, we consider the 

incumbent detection threshold of the DTV signal ( dBm -116Ps  ) and a noise level 

equal to dBm -95.2Pn   (bandwidth equal to 6 MHz and dBNF 11 ). 

 

 

5.3.1.1 Logic OR Fusion Rule 
 

Using equations (22), (37) and (38), we analysis the Average Channel Utilization as 

function of the sensing time L when Logic OR fusion rule is adopted. 

As we can see in the next figure, the use of multi slot spectrum sensing with Logic 

OR Fusion Rule doesn’t increase the performance in term of channel utilization. 
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Figure 78: Multi Slot Sensing - Average Channel Utilization versus Sensing Time (Logic OR 

Fusion Rule – Pidle=0.85) 
 

This decreased of performance is due to the behaviour of the Probability of False 

Alarm ORfP , , that is plot in the next figure. 
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Figure 79: Multi Slot Sensing - Probability of False Alarm versus Sensing Time (Logic OR 

Fusion Rule – Pidle=0.85) 
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As we can see, the probability of false alarm decreases if the sensing time L is 

increased. Since the probability of false alarm increases if the number of quiet 

periods is increased, the average channel utilization decrease. In fact, in the CPUP 

scenario, it depend only on the ORfP ,  and L. Hence, for a fixed sensing time, the 

decrease of the channel utilization is due to the increase of the probability of false 

alarm. 

Now, we consider the following plot in which the probabilities of False Alarm, of the 

final decision and the single slot, and the Probability of Detection of the single slot 

are shown. 
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Figure 80: Multi Slot Sensing - Probabilities of False Alarm and Probability of Detection (Single 

Slot) versus M (Logic OR Fusion Rule – Pd=0.9, Pidle=0.85, L=10 ms) 
 

As we can see, for a fixed probability of detection ORdP , , the probabilities of false 

alarm and detection of single slot, 0,fP  and 0,dP , respectively, decrease if the 

number of quiet periods is decreased. Hence, for a fixed ORdP , , if the number of 

quiet periods increases, the requirements about 0,dP  can be relaxed and, moreover, 

since for smaller probability of detection of single slot the threshold increases, the 

probability of false alarm, 0,fP , decreases. On the contrary, the probability of false 
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alarm ORfP ,  increases if the number of quiet periods is increased and the average 

channel utilization decreases. 

To conclude this analysis, it is useful consider the case in which for each mini slot 

we collect N samples, instead of N/M. In this case, as the number of mini slots 

increases, the probability of false alarm ORfP ,  decreases, as show in the next figure. 
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Figure 81: Multi Slot Sensing - Probability of False versus L single slot - Logic OR (Li for each 

mini slots equal to L) 
 

Intuitively, we would expect that the channel utilization increases when the number 

of quiet periods increases. Instead, as shown in the following figure, we obtain the 

higher channel utilization when the number of quiet periods is equal to 1. In fact, we 

must consider that in this case the total sensing time is proportional to the number of 

quiet periods. In fact, the optimum sensing time for which we obtain the maximum 

average channel utilization decreases if the number of quiet periods is increased. On 

the other hand, the maximum value of the average channel utilization decrease when 

the number of mini-slots is increased. 
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Figure 82: Multi Slot Sensing – Average Channel Utilization versus L single slot – Logic OR 

(Number of sample for each mini slots equal to N) 
 

5.3.1.2 Logic AND Fusion Rule 
 

Using equations (22), (41) and (42), we analyse the Average Channel Utilization as 

function of the sensing time L when Logic AND fusion rule is adopted. 

The use of multi slot spectrum sensing with Logic AND Fusion Rule doesn’t 

increase the performance in term of average channel utilization. Again, this is due to 

the behaviour of the Probability of False Alarm ANDfP , , that is plotted in the next 

figure. As we can see, the probability of false alarm decreases if the sensing time L is 

increased. Since the probability of false alarm increases if the number of quiet 

periods is increased, the average channel utilization decrease. In fact, in the CPUP 

scenario, it depend only on the ANDfP ,  and L. Hence, for a fixed sensing time, the 

decrease of the channel utilization is due to the increase of the probability of false 

alarm. 
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Figure 83: Multi Slot Sensing - Average Channel Utilization versus Sensing Time (Logic AND 

Fusion Rule – Pidle=0.85) 
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Figure 84:Multi Slot Sensing - Probability of False Alarm versus Sensing Time (Logic AND 

Fusion Rule – Pidle=0.85) 
 

As done in the case of Logic OR fusion Rule, we consider the following plot in 

which the probabilities of False Alarm, of the final decision and the single slot, and 

the Probability of Detection of the single slot are shown. 
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As we can see for a fixed probability of detection ANDdP , , the probabilities of false 

alarm and detection of single slot, 0,fP  and 0,dP , respectively, increase if the 

number of quiet periods is decreased. Moreover, like in the case of OR fusion rule, 

the probability of false alarm ANDfP ,  increases if the number of quiet periods is 

increased, and the average channel utilization decreases. 
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Figure 85: Multi Slot Sensing - Probabilities of False Alarm and Probability of Detection (Single 

Slot) versus M (Logic AND Fusion Rule – Pd=0.9, Pidle=0.85, L=10 ms) 
 

To conclude this analysis, it is useful consider the case in which for each mini slot 

we collect N samples, instead of N/M. 
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Figure 86: Multi Slot Sensing - Probability of False versus L single slot - Logic AND (Number of 

sample for each mini slots equal to N) 
 

In this case, as the number of mini slots increases, the probability of false alarm 

ANDfP ,  decreases, as show in the previous figure. 

Intuitively, we would expect that the channel utilization increases when the number 

of quiet periods increases. Instead, as shown in the following figure, we obtain the 

higher channel utilization when the number of quiet periods is equal to 1. In fact, we 

must consider that in this case the total sensing time is proportional to the number of 

quiet periods. 

 



 121

10
-1

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

L (ms)

A
ve

ra
ge

 C
ha

nn
el

 U
til

iz
at

io
n

 

 

M=10
Average Channel Utilization

0.816
Sensing Time
L=14.17 ms

M=3
Average Channel Utilization

0.859
Sensing Time
L=29.69 ms

M=2
Average Channel Utilization

0.866
Sensing Time
L=38.18 ms

M=1 (Single Slot)
Average Channel Utilization

0.875
Sensing Time

L=60.1 ms

 
Figure 87: Multi Slot Sensing – Average Channel Utilization versus L single slot– Logic AND 

(Number of sample for each mini slots equal to N) 
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5.3.2 Decision Fusion under CSUSU Scenario 
 

In this subsection, considering both the Logic OR and Logic AND fusion rules, we 

analyse the performance of Decision Fusion in multi slot spectrum sensing under the 

Constant Secondary User Spectrum Utilization Scenario. 

As done in the case of single slot, we use a target Probability of Detection of the final 

decision equal to 0.9, and, according with the DFS requirements, we consider the 

incumbent detection threshold of the DTV signal ( dBm -116Ps  ) and a noise level 

equal to dBm -95.2Pn   (bandwidth equal to 6 MHz and dBNF 11 ). 

 

 

5.3.2.1 Logic OR Fusion Rule 
 

Using equations (22), (34) and (35), we analysis the Average Channel Utilization as 

function of the sensing time L when Logic OR fusion rule is adopted.  
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Figure 88: Multi Slot Sensing - Average Channel Utilization versus Sensing Time (Logic OR 

Fusion Rule – Pidle=0.85) 
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As we can see in the previous figure, the use of multi slot spectrum sensing with 

Logic OR Fusion Rule increases the performance in term of channel utilization. 

Looking at the pictures above we are led to conclude that the use of multi-slot 

spectrum sensing with OR fusion rule leads to a performance’s increase in terms of 

Average Channel Utilization. In fact, as done in the case of single slot, the maximum 

value of Average Channel Utilization in the CSUSU scenario is obtained considering 

the time needed to achieve a sensing probability of detection equal to 0.9. For this 

reason, in the following figure we plot the probability of detection as a function of 

sensing time and, then, we get the value of L with which we achieve the minimum 

value of ORd,P  defined by the standard. 
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Figure 89: Multi Slot Sensing – Probability of Detection versus Sensing Time – CSUSU scenario 

(Logic OR Fusion Rule – Pidle=0.85) 
 

As we can see, for a fixed ORd,P , the sensing time increases when the number of 

quiet periods increases. Using these value, we can compute the Average Channel 

Utilization, as shown in the next figure. 
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Figure 90: Multi Slot Sensing – Value of Average Channel Utilization - CSUSU scenario (Logic 

OR Fusion Rule – Pidle=0.85) 
 

As shown the Average Channel Utilization decreases if the number of quiet periods 

increases. Hence, the seeming increase of the Channel utilization is due to the 

increase of the Probability of MisDetection, ORd,ORmd, P-1P   and we can say that, 

again, the multi slot spectrum sensing using OR fusion rule doesn’t lead up to 

increase of the average channel utilization. 

To conclude this analysis, it is useful consider the case in which for each mini slot 

we collect N samples, instead of N/M. 
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Figure 91: Multi Slot Sensing - Probability of False versus L single slot - Logic OR (Number of 

sample for each mini slots equal to N) 
 

In this case, as the number of mini slots increases, the probability of detection ORdP ,  

increases, as show in the previous figure. 

Intuitively, we would expect that the channel utilization increases when the number 

of quiet periods increases because we obtain the target probability of detection for a 

smaller L. Instead, as shown in the following figure, we obtain the higher channel 

utilization when the number of quiet periods is equal to 1. In fact, we must consider 

that in this case the total sensing time is proportional to the number of quiet periods. 
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Figure 92: Multi Slot Sensing – Average Channel Utilization versus L single slot– Logic OR 

(Number of sample for each mini slots equal to N) 
 

 

5.3.2.2 Logic AND Fusion Rule 
 

Using equations (34) and (35), we plot the Average Channel Utilization as function 

of the sensing time L when Logic AND fusion rule is adopted. 

As we can see in the next figure, the use of multi slot spectrum sensing with Logic 

AND Fusion Rule increases the performance in term of channel utilization. In the 

follow of this subsection we demonstrate that this increase of the channel utilization 

is due to the increase of the probability of misdetection, like when OR fusion rule is 

adopted. 

As said in the case of multi slot using OR fusion rule, the maximum value of 

Average Channel Utilization in the CSUSU scenario is obtained considering the time 

needed to achieve a sensing probability of detection equal to 0.9. For this reason, in 

the following figure we plot the probability of detection as a function of sensing time 

and, then, we get the value of L with which we achieve the minimum value of ORd,P  

defined by the standard. 
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As we can see, for a fixed ANDd,P , the sensing time increases when the number of 

quiet periods increases. 
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Figure 93: Multi Slot Sensing - Average Channel Utilization versus Sensing Time (Logic AND 

Fusion Rule – Pidle=0.85) 
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Figure 94: Multi Slot Sensing – Probability of Detection versus Sensing Time – CSUSU scenario 

(Logic AND Fusion Rule – Pidle=0.85) 
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Using these value, we can compute the Average Channel Utilization, as shown in the 

next figure. 
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Figure 95: Multi Slot Sensing – Value of Average Channel Utilization - CSUSU scenario (Logic 

AND Fusion Rule – Pidle=0.85) 
 

As shown the Average Channel Utilization decreases if the number of quiet periods 

increases. Hence, the seeming increase of the Channel utilization is due to the 

increase of the Probability of MisDetection, ANDd,ANDmd, P-1P   and we can say 

that, again, the multi slot spectrum sensing using AND fusion rule doesn’t lead up to 

increase of the average channel utilization. 

To conclude this analysis, it is useful consider the case in which for each mini slot 

we collect N samples, instead of N/M. 
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Figure 96: Multi Slot Sensing - Probability of False versus L single slot- Logic AND (Number of 

sample for each mini slots equal to N) 
 

In this case, as the number of mini slots increases, the probability of detection 

ANDdP ,  increases, as show in the previous figure. 

Intuitively, we would expect that the channel utilization increases when the number 

of quiet periods increases because we obtain the target probability of detection for a 

smaller L. Instead, as shown in the following figure, we obtain the higher channel 

utilization when the number of quiet periods is equal to 1. In fact, we must consider 

that in this case the total sensing time is proportional to the number of quiet periods. 
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Figure 97: Multi Slot Sensing – Average Channel Utilization versus L single slot– Logic AND 

(Number of sample for each mini slots equal to N) 
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Chapter 6 

COOPERATIVE SPECTRUM SENSING 
USING SINGLE-STAGE SENSING 

 

In order to improve the performance of the spectrum sensing, the Secondary Users 

can cooperate to detect the presence of the Primary User. For this reason, in this 

section we extend the system model used in the Local Single Stage Sensing to the 

case of Cooperative Spectrum Sensing, i.e., a Cognitive Radio Network in which 

secondary users cooperate. 

The decision topology used for cooperative detection is a parallel network with a 

fusion center. This topology consists of 2N  local detectors all observing the same 

phenomenon. The local detectors transmit their measurement statistics to a fusion 

center which makes a global decision. 

In this section we consider Hard Decision Fusion which means that each secondary 

user makes a local decision about the presence of primary user and then sends the 

binary decision to the fusion center for decision fusion. We consider performance’s 

analysis in the case of secondary users grouped in clusters, hence all with the same 

average Signal-to-Noise Ratio. 

In this chapter we describe and analyse the performance in Cooperative Spectrum 

Sensing using Single Stage Sensing. In particular, according with the results of the 

previous chapter, we consider only Single Slot Sensing transmission mode. 
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6.1 Overview on Cooperative Spectrum Sensing 

 

Hard Decision Fusion means that each user observes, in the case of energy detection, 

the signal energy in a given spectrum band, compares it to a threshold and makes a 

decision on the presence of a primary user according to the observation. Then, each 

cooperative node shares its decision with other radios using zero or one to inform 

whether they observe a free channel or an occupied channel, respectively. In 

particular, if the individual decision of the generic user i-th is equal to H0, the user 

sends to the Base Station a flag equal to 0, while if the individual decision is equal to 

H1,  it sends to the base station a flag equal to 1. When the base station receives a flag, 

it made a final decision according with a fusion rule. In particular, each secondary 

user sense the environments for a time equal to L and then makes the final decision at 

the end of the CDT interval. The base station, or the master secondary user, collects 

the single decision and fuses it to make the final decision. 

 

 
Figure 98: Cooperative Singlee Slot Spectrum Sensing 

 

 

6.1.1 Maximum Number of Cooperative Users 
 

The Draft PHY/MAC Specification for IEEE 802.22 WRANs provides a Multiple 

Access based on Orthogonal Frequency Division Multiple Access (OFDMA) 

according with the system parameters shown in the next table. 
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Parameters Specification Remark 

Frequency range 54~862 MHz  

Service coverage Typical range 33 km  

Bandwidth Mandatory: 6, 7, 8 MHz 

Optional fractional use of TV channel and 

channel bonding up to 3 contiguous TV 

channels. Channel aggregation of 

discontinuous channels. 

Data rate 
Maximum: 72.6 Mbps 

Minimum: 4.8 Mbps 
Maximum of 23 Mbps for 6 MHz 

Spectral Efficiency 
Maximum: 4.03 bits/s/Hz 

Minimum: 0.81 bits/s/Hz 
Single TV channel BW of 6 MHz 

Modulation 
QPSK, 16QAM, 64QAM 

mandatory 
 

Transmit power Default 4W EIRP  

Multiple Access Adaptive OFDMA Partial bandwidth allocation 

FFT Mode 2K mandatory 
1K / 4K optional, 2K / 4K / 6K for 

channel bonding 

Cyclic Prefix Mode 1/4, 1/8, 1/16, 1/32  

Duplex TDD mandatory FDD supported 

Network topology Point-to-Multipoint Network  
 

Table 3: Physical Standard Specification for IEEE 802.22 
 

As we can see in the third column of Table 1, the multiple access based on adaptive 

OFDMA provides a partial bandwidth allocation. This means that the bandwidth iB  

available for the i th secondary user, i=1,2,…I, is equal to 

 

N

B
Bi  ,     (1) 

 

where B is the total bandwidth. According to the partial bandwidth allocation, let η 

be the Spectral Efficiency, defined as the ratio between the data rate and the 

bandwidth, 
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 Hzsbit
B

R
 ,    (2) 

 

the maximum data rate available for each cooperative user is given by 

 

sbitBR ii max,     (3) 

 

The maximum data rate using a single TV channel (  MHz6 ) depend on particular 

modulation used [1]. In particular, IEEE 802.22 defines 12 combinations of three 

modulations (quaternary phase shift keying [QPSK], 16-quadrature amplitude 

modulation [QAM], 64-QAM) and four coding rates (1/2, 2/3, 3/4, 5/6) for data 

communications that can be flexibly chosen among to achieve various trade-offs of 

data rate and robustness, depending on the channel and interference conditions. As 

shown in the next table, a total of 14 transmission modes are supported in IEEE 

802.22. 

 

PHY Mode Modulation Coding Rate 
Peak data rate 

in 6 MHz (Mb/s) 

Spectral Efficiency 

(BW = 6 MHz) 

1 BPSK Uncoded 4.54 0.76 

2 QPSK 1/2 and repeat: 3 1.51 0.25 

3 QPSK 1/2 4.54 0.76 

4 QPSK 2/3 6.05 1.01 

5 QPSK 3/4 6.81 1.13 

6 QPSK 5/6 7.56 1.26 

7 16-QAM 1/2 9.08 1.51 

8 16-QAM 2/3 12.10 2.02 

9 16-QAM 3/4 13.61 2.27 

10 16-QAM 5/6 15.13 2.52 

11 64-QAM 1/2 13.61 2.27 

12 64-QAM 2/3 18.15 3.03 

13 64-QAM 3/4 20.42 3.40 

14 64-QAM 5/6 22.69 3.78 

Table 4: PHY mode in IEEE 802.22 
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As we have seen, the maximum data rate is equal to sMbit 22.69 , to which 

correspond a Spectral Efficiency equal to 3.78 bit/s/Hz. Suppose that we allocate the 

same bandwidth for each user, using equations (1) and (2) and the result in (3), the 

maximum number of users that can share a single TV channel is given by 

 











minR

B
N


,     (4) 

 

where minR  is the minimum data rate defined in the requirements of the IEEE 

802.22 standard draft for a single user. The data rate constraints depend on whether 

the data is transmitted in the downlink or in the uplink. In the downlink (BS to CPE) 

the required minimum peak data rate must be at least equal to 1.5 Mbit/s per user, 

while in the uplink (CPE to BS) 384 Kbit/s per user, but, thanks to the adaptive 

boundary between upstream and downstream used in 802.22 MAC frames, the 

constraint per user rates can be combined in a single constraint, e.g., ~ 1.9 Mbit/s. 

Hence, in order to obtain the minimum data rate per secondary user, the maximum 

theoretical number of users sharing a single TV channel is given by 

 

    
  11

9.1

678.3

min
max 



















sMbit

MHzHzsbit

R

B
N


.  (5) 

 

We say that the result in (5) is theoretical because, till this moment, we assumed that 

all time is dedicated for data transmission. In fact, since each transmission period is 

followed by a quiet period, using equation (3), the Average Throughput for a single 

user is given by 

 

iii BRR   max, .    (6) 

 

where, since the IEEE 802.22 standard requires that all user to synchronize their 

quiet periods (to ensure the effective use of quiet period to improve sensing 

performance),   is average channel utilization of the cooperative users, equal for 
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each secondary user. Hence, in the cooperative spectrum sensing the sensing period 

must be chosen according to the number of cooperative users and the modulation 

used in order to satisfy the constraint about the minimum data rate 

sMbitsR /9.1min  . 

 

 

6.1.2 Cooperative Sensing Accuracy 
 

The extension of the sensing accuracy from local to cooperative spectrum sensing 

depends only on the number of cooperating users I and the particular fusion rule 

adopted. Assuming that the decision of each user is independent from the decisions 

of the other users,      
d

I
d

i
d

1
d PPPP  ......  and 

     
f

I
f

i
f

1
f PPPP  ......  represent the probabilities of detection and false 

alarm of the single user, respectively, where dP  and fP  are given by equations (6) 

and (7) in Chapter 5. In this subsection we analyse the impact of the cooperative 

model on the performance of spectrum sensing using different fusion rules. In 

particular, the Joint Probabilities of detection, dQ , and false alarm, fQ , depend on 

the fusion rule and are given by 

 

 “LOGIC OR” fusion rule: the decision is made that a primary user is present 

if one of the cooperating radios detects a primary user. In case all secondary 

users have the same individual Pd and Pf, the joint probabilities of detection 

Qd,OR and false alarm Qf,OR can therefore be given as 

 

 IdORd PQ  11,      (7) 

 

 IfORf PQ  11,      (8) 
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 “LOGIC AND” fusion rule: the decision that a primary user is present is 

made only if all cooperating users detect the presence of primary user. In 

case all secondary users have the same individual Pd and Pf, joint 

probabilities of detection Qd,AND and false alarm Qf,AND for M cooperating 

users using AND-rule can be calculated as 

 

I
dANDd PQ ,      (9) 

 

I
fANDf PQ ,      (10) 

 

 

6.1.3 Cooperative Channel Utilization 
 

In the previous subsection we have seen that the sensing accuracy of Cooperative 

Spectrum Sensing can be characterized using equations (1) - (6). As seen in the Local 

Spectrum Sensing, the Average Channel Utilization ρ depend on the probabilities 

that the WRAN decide for a idle or busy channel. In Cooperative Spectrum Sensing, 

these two probabilities can be express as follow 

 

    busydidlefs PQPQP  11    (11) 

 

busydidlefe PQPQP      (12) 

 

respectively, where and dQ  and fQ  depend on the particular fusion rule. Hence, 

using equations (11) and (12), the channel utilization of Cooperative Spectrum 

Sensing using Single Stage Sensing is given by 

 

    






 







 


tot

busydidlefbusydidlef T

LT
PQPQ

T

LT
PQPQ )1()1(  (15) 
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where SetupMovetot TTTT  . The Channel Move Time and Channel Setup Time 

are independent on the number of cooperative users, but this is not true for Average 

Channel-Search Time. 

 

 

6.1.3.1 Cooperative Average Channel-Search Time 
 

In this subsection we analyse the impact of the cooperative scheme on the Average 

Channel-Search Time searchT . Using the results in chapter 5 and considering a 

conservative operation mode in which the channel is declared busy if only one 

cooperative user detects the primary user (Logic OR fusion rule) , the Average 

Channel-search time can be express as follow. 

 

idlef

s

search
PQ

T
T

)1( 
 .    (13) 

 

Hence, the optimum Sensing Time for each channel can be formulate as follow: 
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where sTmin  is the minimum sensing time to obtain the maximum value of the 

probability of false alarm. It can be compute as follow 
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SNR

SNRPQPQ

B
T

dfs 212
11

min ,   (15) 

 

The trade off between the channel-search time and the quality of sensing can be 

observed plotting the average channel-search time as function of the sensing, as 

shown in the next figure, in which we consider a joint probability of detection equal 

to 0.99, a SNR equal to -20.8 dB, a bandwidth equal to 6 MHz and a 85.0idleP . 
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Figure 99: Cooperative Single Slot - Average Channel-Search Time VS Sensing Time (Pd=0.99) 

 

As expected, when the number of cooperative users increases the searchT  is 

decreased. In the next table the values of Average Channel-Search Time for different 

number of users are shown. 
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 1 user 2 users 3 users 4 users 5 users 6 users 

searchT  60.02 ms 37.54 ms 28.11 ms 23.15 ms 20.05 ms 17.90 ms 
       

 7 users 8 users 9 users 10 users 11 users  

searchT  16.31 ms 15.08 ms 14.10 ms 13.29 ms 12.62 ms  

Table 5: Cooperative Single Slot - Optimum values of the Average channel-Search Time 
 

In the next subsection, we’ll use these values to compute the average channel 

utilization in (15). 

 

 

6.2 Cooperative Constant Primary User Protection 
Scenario 

 

In Cooperative Single Stage Spectrum Sensing the CPUP scenario is realized by 

fixing the joint probability of detection at the required level dQ  and minimizing the 

joint probability of false alarm fQ  as much as possible. In this scenario the average 

channel utilization can be express as follow 

 

    






 







 


tot

busydidlefbusydidlef T

LT
PQPQ

T

LT
PQPQ )1()1(   (16) 

 

where the joint probability of false alarm can be computed from the probability of 

false alarm of each user, the number of cooperative users and according with the 

fusion rule adopted. In other words, from the joint probability of detection, the 

procedure to compute fQ  is the following: 

 

1. Compute the probability of detection for each user, dP , from the number of 

cooperative users and according with the fusion rule adopted; 
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2. Compute the probability of false alarm for each user, fP , using the following 

equation 

 

  











 
 

2
21

2
1 SNRBL

SNRPQQP df ;  (17) 

 

3. Compute the joint probability of false alarm, fQ , from the number of 

cooperative users and according with the fusion rule adopted. 

 

As known, the use of cooperative model increases the performance of spectrum 

sensing. In this subsection, using the fusion rules defined above, we investigate this 

issue when CPUP is adopted. 

To do this, according with the DFS requirements, we consider the incumbent 

detection threshold of the DTV signal ( dBm -116Ps  ) and a noise level equal to 

dBm -95.2Pn   (bandwidth equal to 6 MHz and dBNF 11 ). 

 

 

6.2.1 Logic OR Fusion Rule under CPUP Scenario 
 

Using equations (1) and (2), we analysis the Average Channel Utilization as function 

of the sensing time L when Logic OR fusion rule is adopted. In particular, the 

procedure defined above can be express as follow: 

 

1. Compute the probability of detection for each user, dP , from the number of 

cooperative 

 

I ORdd QP ,11  ;    (18) 
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2. Compute the probability of false alarm for each user, fP , using equation 

(18); 

3. Compute the joint probability of false alarm, fQ , from the number of 

cooperative users 

 

 IfORf PQ  11, .    (19) 

 

The behaviour of the average channel utilization is shown in the next figure. 
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Figure 100: Cooperative Spectrum Sensing CPUP - Average Channel Utilization versus Sensing 

Time (Logic OR Fusion Rule – Pidle=0.85) 
 

As we can see in the next figure, when Logic OR Fusion Rule is used the average 

channel utilization increases This increased of performance is due to the behaviour of 

the Joint Probability of False Alarm ORfQ , , that is plot in the next figure. 
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Figure 101: Cooperative Spectrum Sensing CPUP – Joint Probability of False Alarm versus 

Sensing Time (Logic OR Fusion Rule) 
 

As we can see, the joint probability of false alarm decreases if the sensing time L is 

increased. Since the probability of false alarm increases if the number of cooperative 

users is increased, the average channel utilization increases. 

 

 

6.2.2 Logic AND Fusion Rule under CPUP Scenario 
 

Using equations (3) and (4), we analysis the Average Channel Utilization as function 

of the sensing time L when Logic AND fusion rule is adopted. In particular, the 

procedure defined above can be express as follow: 

 

1. Compute the probability of detection for each user, dP , from the number of 

cooperative 

 

I ANDdd QP , ;    (20) 
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2. Compute the probability of false alarm for each user, fP , using equation 

(20); 

3. Compute the joint probability of false alarm, fQ , from the number of 

cooperative users 

 

I
fORf PQ , .    (21) 

 

The behaviour of the average channel utilization is shown in the next figure. 
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Figure 102: Cooperative Spectrum Sensing CPUP - Average Channel Utilization versus Sensing 

Time (Logic AND Fusion Rule – Pidle=0.85) 
 

As we can see in the next figure, when Logic AND Fusion Rule is used the average 

channel utilization increases This increased of performance is due to the behaviour of 

the Joint Probability of False Alarm ANDfQ , , that is plot in the next figure. 
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Figure 103: Cooperative Spectrum Sensing CPUP– Joint Probability of False Alarm versus 

Sensing Time (Logic AND Fusion Rule) 
 

As we can see, the joint probability of false alarm decreases if the sensing time L is 

increased. Since the probability of false alarm increases if the number of cooperative 

users is increased, the average channel utilization increases. 

 

 

6.2.3 Comparison between Logic OR and Logic AND 
 

In this subsection we determine the optimum fusion rule that maximize the average 

channel utilization under CPUP scenario. To do this, we consider the following 

figure. 
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Figure 104: Cooperative Spectrum Sensing – CPUP - Comparison between Logic OR and Logic 

AND fusion rules 
 

The previous figure shows that the benefits of cooperation can be achieved with a 

relative small number of cooperating users. In particular, these benefits are higher 

when Logic AND fusion rule is adopted. On the other hand, as shown in the next 

figure, to achieve the target joint probability of detection, each secondary user must 

guaranteed a probability of detection higher than the target. 
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Figure 105: Probabilities of Detection (Qd and Pd) vs Number of Cooperating Users (AND rule) 
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On the contrary, when Logic OR fusion rule is adopted, the probability of detection 

of each user decreases if the number of cooperative users is increased, as shown in 

the next figure. 
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Figure 106: Probabilities of Detection (Qd and Pd) vs Number of Cooperating Users (OR rule) 

 

Hence, we can conclude that Logic AND fusion rule is the optimum fusion rule that 

maximize the average channel utilization, but we need more sophisticated sensor (Pd 

must increases to achieve the target Qd). On the other hand, when Logic OR fusion 

rule, we obtain a smaller performance improvement, but we need less sophisticated 

sensors. 
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6.3 Cooperative Constant Secondary User Spectrum 
Utilization Scenario 

 

In Cooperative Single Stage Spectrum Sensing the CSUSU scenario is realized by 

fixing the joint probability of false alarm at the required level fQ . The sensing time 

is chosen in order to obtain the minimum joint probability of detection dQ  defined in 

the requirements about sensing accuracy of IEEE 802.22 standard. In this scenario 

the average channel utilization can be express as follow 
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where the joint probability of detection can be computed from the probability of false 

alarm of each user, the number of cooperative users and according with the fusion 

rule adopted. In other words, from the joint probability of false alarm, the procedure 

to compute dQ  is the following: 

 

1. Compute the probability of false alarm for each user, fP , from the number 

of cooperative users and according with the fusion rule adopted; 

2. Compute the probability of detection for each user, dP , using the following 

equation 
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3. Compute the joint probability of detection, fQ , from the number of 

cooperative users and according with the fusion rule adopted. 
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As known, the use of cooperative model increases the performance of spectrum 

sensing. In this subsection, using the fusion rules defined above, we investigate this 

issue when CSUSU is adopted. 

To do this, according with the DFS requirements, we consider the incumbent 

detection threshold of the DTV signal ( dBm -116Ps  ) and a noise level equal to 

dBm -95.2Pn   (bandwidth equal to 6 MHz and dBNF 11 ). 

 

 

6.3.1 Logic OR Fusion Rule under CSUSU Scenario 
 

Using equations (1) and (2), we analysis the Average Channel Utilization as function 

of the sensing time L when Logic OR fusion rule is adopted. In particular, the 

procedure defined above can be express as follow: 

 

1. Compute the probability of false alarm for each user, fP , from the number 

of cooperative 

 

I ORff QP ,11  ;    (24) 

 

2. Compute the probability of detection for each user, dP , using equation (23); 

3. Compute the joint probability of detection, dQ , from the number of 

cooperative users 

 

 I
dORd PQ  11, .    (25) 

 

The behaviour of the Joint Probability of Detection as function of the sensing time is 

shown in the next figure. 
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Figure 107: Cooperative Spectrum Sensing CSUSU – Average Channel Utilization versus 

Sensing Time (Logic OR Fusion Rule) 
 

As we can see in the next figure, it’s possible increase the probability of detection 

Qd,OR with an increased cooperating users’ number. 
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Figure 108: Cooperative Spectrum Sensing CSUSU- Joint Probability of Detection versus 

Sensing Time (Logic OR Fusion Rule – Pidle=0.85) 
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Using the sensing times that allowed to achieve a joint probability of detection equal 

to 0.9, we can compute the average channel utilization, as shown in the next figure. 
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Figure 109: Cooperative Spectrum Sensing CSUSU– Values of Average Channel Utilization 

versus Sensing Time (Logic OR Fusion Rule) 
 

As expected, the Average Channel Utilization increases as the number of cooperating 

users increases. 

 

 

6.3.2 Logic AND Fusion Rule under CSUSU Scenario 
 

Using equations (3) and (4), we analysis the Average Channel Utilization as function 

of the sensing time L when Logic AND fusion rule is adopted. In particular, the 

procedure defined above can be express as follow: 

 

1. Compute the probability of false alarm for each user, fP , from the number 

of cooperative 
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I ANDff QP , ;    (26) 

 

2. Compute the probability of detection for each user, dP , using equation (23);  

3. Compute the joint probability of detection, dQ , from the number of 

cooperative users 

 

I
dORd PQ , .    (27) 

 

The behaviour of the Joint Probability of Detection as function of the sensing time is 

shown in the next figure. 
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Figure 110: Cooperative Spectrum Sensing CSUSU – Average Channel Utilization versus 

Sensing Time (Logic AND Fusion Rule) 
 

Again, as we can see in the next figure, for a fixed sensing time, the joint probability 

of detection increases if the number of cooperative user is increased. 
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Figure 111: Cooperative Spectrum Sensing CSUSU- Joint Probability of Detection versus 

Sensing Time (Logic AND Fusion Rule – Pidle=0.85) 
 

Using the sensing times that allowed to achieve a joint probability of detection equal 

to 0.9, we can compute the average channel utilization, as shown in the next figure. 
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Figure 112: Cooperative Spectrum Sensing CSUSU– Values of Average Channel Utilization 

versus Sensing Time (Logic AND Fusion Rule) 
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As expected, the Average Channel Utilization increases as the number of cooperating 

users increases. 

 

 

6.3.3 Comparison between Logic OR and Logic AND 
 

In this subsection we determine the optimum fusion rule that maximize the average 

channel utilization under CSUSU scenario. To do this, we consider the following 

figure. 
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Figure 113: Cooperative Spectrum Sensing – CSUSU -Comparison between Logic OR and 

Logic AND fusion rules 
 

The previous figure shows that the benefits of cooperation can be achieved with a 

relative small number of cooperating users. In particular, these benefits are higher 

when Logic OR fusion rule is adopted.  
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CONCLUSION 
 

In this work we determined the optimum sensing period for spectrum sensing. As 

show in the previous section, if we use of mini slot spectrum sensing we don’t obtain 

a performance’s increase in term of average channel utilization. Hence, the optimum 

transmission mode is the single slot spectrum sensing, to which correspond a sensing 

period equal to 2 seconds. Moreover, using a CPUP scenario, we can set the 

optimum sensing time in order to maximize the average channel utilization, higher 

than single slot spectrum sensing under CSUSU scenario. 

As we have seen in Chapter 6, the Cooperative Spectrum Sensing increases the 

average channel utilization for each user, hence, the data rate of the network 

increases. On the other hand, the data rate of each user decreases if the number of 

cooperative users increase. For this reason, after the selection of the sensing time, the 

base station must evaluate the average throughput of each secondary user in order to 

guarantee the minimum data rate defined by the standard requirements of IEEE 

802.22. Moreover, since we considered a fixed values of the SNR, the base station 

should estimate the received SNR in order to obtain a optimum choice of the sensing 

time. This represents the cognitive capability of a sensing device, with which a 

cognitive radio can understand the context it finds itself in and autonomously 

configure itself in response to a set of goals. In this case the goal is the optimum 

selection of the sensing time in order to satisfy the requirements about the sensing 

accuracy and capacity. Hence, this issue can be formulated as an optimization 

problem and solved using numerical optimization. 
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